論文の概要: Evolutionary Perspectives on the Evaluation of LLM-Based AI Agents: A Comprehensive Survey
- arxiv url: http://arxiv.org/abs/2506.11102v1
- Date: Fri, 06 Jun 2025 17:52:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-16 17:50:49.460921
- Title: Evolutionary Perspectives on the Evaluation of LLM-Based AI Agents: A Comprehensive Survey
- Title(参考訳): LLMをベースとしたAIエージェントの評価に関する進化的視点:総合的な調査
- Authors: Jiachen Zhu, Menghui Zhu, Renting Rui, Rong Shan, Congmin Zheng, Bo Chen, Yunjia Xi, Jianghao Lin, Weiwen Liu, Ruiming Tang, Yong Yu, Weinan Zhang,
- Abstract要約: 従来の大規模言語モデル(LLM)からより高度なAIエージェントへの移行は、重要な進化のステップである。
既存の評価フレームワークは、LLMチャットボットとAIエージェントの区別を曖昧にし、適切なベンチマークを選択する研究者の間で混乱を招くことが多い。
本稿では,進化的観点からの現在の評価手法の体系的分析を紹介する。
- 参考スコア(独自算出の注目度): 45.485318955120924
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The advent of large language models (LLMs), such as GPT, Gemini, and DeepSeek, has significantly advanced natural language processing, giving rise to sophisticated chatbots capable of diverse language-related tasks. The transition from these traditional LLM chatbots to more advanced AI agents represents a pivotal evolutionary step. However, existing evaluation frameworks often blur the distinctions between LLM chatbots and AI agents, leading to confusion among researchers selecting appropriate benchmarks. To bridge this gap, this paper introduces a systematic analysis of current evaluation approaches, grounded in an evolutionary perspective. We provide a detailed analytical framework that clearly differentiates AI agents from LLM chatbots along five key aspects: complex environment, multi-source instructor, dynamic feedback, multi-modal perception, and advanced capability. Further, we categorize existing evaluation benchmarks based on external environments driving forces, and resulting advanced internal capabilities. For each category, we delineate relevant evaluation attributes, presented comprehensively in practical reference tables. Finally, we synthesize current trends and outline future evaluation methodologies through four critical lenses: environment, agent, evaluator, and metrics. Our findings offer actionable guidance for researchers, facilitating the informed selection and application of benchmarks in AI agent evaluation, thus fostering continued advancement in this rapidly evolving research domain.
- Abstract(参考訳): GPT、Gemini、DeepSeekといった大規模言語モデル(LLM)の出現は、自然言語処理が大幅に進歩し、多様な言語関連タスクが可能な高度なチャットボットが誕生した。
これらの従来のLLMチャットボットからより高度なAIエージェントへの移行は、重要な進化のステップである。
しかしながら、既存の評価フレームワークは、LLMチャットボットとAIエージェントの区別を曖昧にし、適切なベンチマークを選択する研究者の間で混乱を引き起こします。
本稿では, このギャップを埋めるために, 進化的観点からの現在の評価手法の体系的分析を紹介する。
複雑な環境、マルチソースインストラクター、動的フィードバック、マルチモーダル知覚、高度な能力の5つの重要な側面に沿って、AIエージェントとLLMチャットボットを明確に区別する詳細な分析フレームワークを提供する。
さらに、外部環境の駆動力に基づいて既存の評価ベンチマークを分類し、その結果、高度な内部機能を実現する。
各カテゴリについて,実践的な基準表に包括的に提示される関連する評価属性を列挙する。
最後に,現状を整理し,環境,エージェント,評価器,メトリクスの4つの重要なレンズを用いて今後の評価手法を概説する。
我々の研究結果は、AIエージェント評価におけるベンチマークのインフォームドセレクションと適用を容易にし、この急速に進化する研究領域における継続的な進歩を促進するために、研究者に実用的なガイダンスを提供する。
関連論文リスト
- MME-Survey: A Comprehensive Survey on Evaluation of Multimodal LLMs [97.94579295913606]
MLLM(Multimodal Large Language Models)は、産業と学術の両方から注目を集めている。
開発プロセスでは、モデルの改善に関する直感的なフィードバックとガイダンスを提供するため、評価が重要である。
この研究は、研究者に異なるニーズに応じてMLLMを効果的に評価する方法を簡単に把握し、より良い評価方法を促すことを目的としている。
論文 参考訳(メタデータ) (2024-11-22T18:59:54Z) - TestAgent: A Framework for Domain-Adaptive Evaluation of LLMs via Dynamic Benchmark Construction and Exploratory Interaction [29.72874725703848]
大規模言語モデル(LLM)は、様々な垂直領域に徐々に展開されている。
現在の評価方法は、実世界の要求に合致しない静的でリソース集約的なデータセットに依存している。
textbfBenchmark+は従来の質問応答ベンチマークを、より柔軟な戦略基準のフォーマットに拡張します。
我々は,これらの概念を実装したエージェントベースの評価フレームワークであるtextbftextscTestAgentを提案する。
論文 参考訳(メタデータ) (2024-10-15T11:20:42Z) - A Survey on Multimodal Benchmarks: In the Era of Large AI Models [13.299775710527962]
MLLM(Multimodal Large Language Models)は、人工知能に大きな進歩をもたらした。
この調査は、4つのコアドメイン(理解、推論、生成、アプリケーション)にわたるMLLMを評価する211のベンチマークを体系的にレビューする。
論文 参考訳(メタデータ) (2024-09-21T15:22:26Z) - Large Multimodal Agents: A Survey [78.81459893884737]
大規模言語モデル(LLM)は、テキストベースのAIエージェントのパワーで優れたパフォーマンスを実現している。
LLMを利用したAIエージェントをマルチモーダルドメインに拡張することに焦点を当てた、新たな研究トレンドがある。
本総説は, この急速に発展する分野において, 今後の研究に有用な洞察とガイドラインを提供することを目的としている。
論文 参考訳(メタデータ) (2024-02-23T06:04:23Z) - Inadequacies of Large Language Model Benchmarks in the Era of Generative Artificial Intelligence [5.147767778946168]
我々は、23の最先端のLarge Language Models (LLMs)ベンチマークを批判的に評価する。
私たちの研究は、バイアス、真の推論、適応性、実装の不整合、エンジニアリングの複雑さ、多様性、文化的およびイデオロギー規範の見落としなど、重大な制限を明らかにしました。
論文 参考訳(メタデータ) (2024-02-15T11:08:10Z) - AgentBoard: An Analytical Evaluation Board of Multi-turn LLM Agents [74.16170899755281]
本稿では,LLMエージェントの分析的評価に適したオープンソース評価フレームワークであるAgentBoardを紹介する。
AgentBoardは、インクリメンタルな進歩と包括的な評価ツールキットをキャプチャする、きめ細かい進捗率のメトリクスを提供する。
これはLLMエージェントの能力と限界に光を当てるだけでなく、その性能の解釈可能性も最前線に広める。
論文 参考訳(メタデータ) (2024-01-24T01:51:00Z) - ChatEval: Towards Better LLM-based Evaluators through Multi-Agent Debate [57.71597869337909]
われわれはChatEvalと呼ばれるマルチエージェントの審判チームを構築し、異なるモデルから生成された応答の品質を自律的に議論し評価する。
分析の結果,ChatEvalは単なるテキストスコアリングを超越し,信頼性評価のための人間模倣評価プロセスを提供することがわかった。
論文 参考訳(メタデータ) (2023-08-14T15:13:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。