論文の概要: TestAgent: A Framework for Domain-Adaptive Evaluation of LLMs via Dynamic Benchmark Construction and Exploratory Interaction
- arxiv url: http://arxiv.org/abs/2410.11507v4
- Date: Fri, 16 May 2025 05:34:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-19 14:36:11.371094
- Title: TestAgent: A Framework for Domain-Adaptive Evaluation of LLMs via Dynamic Benchmark Construction and Exploratory Interaction
- Title(参考訳): TestAgent:動的ベンチマーク構築と探索的インタラクションによるLLMのドメイン適応評価フレームワーク
- Authors: Wanying Wang, Zeyu Ma, Pengfei Liu, Mingang Chen,
- Abstract要約: 大規模言語モデル(LLM)は、様々な垂直領域に徐々に展開されている。
現在の評価方法は、実世界の要求に合致しない静的でリソース集約的なデータセットに依存している。
textbfBenchmark+は従来の質問応答ベンチマークを、より柔軟な戦略基準のフォーマットに拡張します。
我々は,これらの概念を実装したエージェントベースの評価フレームワークであるtextbftextscTestAgentを提案する。
- 参考スコア(独自算出の注目度): 29.72874725703848
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As large language models (LLMs) are increasingly deployed to various vertical domains, automatically evaluating their performance across different domains remains a critical challenge. Current evaluation methods often rely on static and resource-intensive datasets that are not aligned with real-world requirements and lack cross-domain adaptability. To address these limitations, we revisit the evaluation process and introduce two key concepts: \textbf{Benchmark+}, which extends the traditional question-answer benchmark into a more flexible ``strategy-criterion'' format; and \textbf{Assessment+}, which enhances the interaction process to facilitate deeper exploration and comprehensive analysis from multiple perspectives. We propose \textbf{\textsc{TestAgent}}, an agent-based evaluation framework that implements these concepts using retrieval-augmented generation and reinforcement learning. \textsc{TestAgent} enables automatic dynamic benchmark generation and in-depth assessment across diverse vertical domains. Experiments on tasks ranging from constructing multiple vertical domain evaluations to transforming static benchmarks into dynamic forms demonstrate the effectiveness of \textsc{TestAgent}. This work provides a novel perspective on automatic evaluation methods for domain-specific LLMs, offering a pathway for domain-adaptive dynamic benchmark construction and exploratory assessment.
- Abstract(参考訳): 大規模言語モデル(LLM)は、さまざまな垂直ドメインにデプロイされる傾向にあるため、異なるドメイン間でのパフォーマンスを自動的に評価することは、依然として重要な課題である。
現在の評価手法は、実世界の要求に適合せず、ドメイン間の適応性に欠ける静的でリソース集約的なデータセットに依存していることが多い。
従来の問合せベンチマークをより柔軟な‘strategy-criterion’形式に拡張した \textbf{Benchmark+} と、複数の視点から深い探索と包括的分析を容易にするインタラクションプロセスを強化する \textbf{Assessment+} である。
本稿では,これらの概念を検索拡張生成と強化学習を用いて実装するエージェントベースの評価フレームワークである \textbf{\textsc{TestAgent}} を提案する。
\textsc{TestAgent} は様々な垂直領域にわたる動的ベンチマークの自動生成と詳細な評価を可能にする。
複数の垂直領域評価の構築から静的ベンチマークを動的形式に変換するまでのタスクの実験は、 \textsc{TestAgent}の有効性を示している。
本研究は、ドメイン適応型動的ベンチマーク構築と探索的評価のための経路を提供する、ドメイン固有LLMの自動評価方法に関する新しい視点を提供する。
関連論文リスト
- Survey on Evaluation of LLM-based Agents [28.91672694491855]
LLMベースのエージェントの出現は、AIのパラダイムシフトを表している。
本稿では,これらのエージェントに対する評価手法に関する総合的な調査を初めて実施する。
論文 参考訳(メタデータ) (2025-03-20T17:59:23Z) - SEOE: A Scalable and Reliable Semantic Evaluation Framework for Open Domain Event Detection [70.23196257213829]
オープンドメインイベント検出のためのスケーラブルで信頼性の高いセマンティックレベルの評価フレームワークを提案する。
提案フレームワークはまず,現在7つの主要ドメインをカバーする564のイベントタイプを含む,スケーラブルな評価ベンチマークを構築した。
次に,大言語モデル(LLM)を自動評価エージェントとして活用し,意味的類似ラベルのきめ細かい定義を取り入れた意味的F1スコアを計算する。
論文 参考訳(メタデータ) (2025-03-05T09:37:05Z) - Dynamic benchmarking framework for LLM-based conversational data capture [0.0]
本稿では,大規模言語モデル(LLM)を評価するためのベンチマークフレームワークを提案する。
生成エージェントシミュレーションを統合して、情報抽出、コンテキスト認識、適応エンゲージメントといった重要次元のパフォーマンスを評価する。
その結果,不明瞭な応答を扱う場合,適応戦略によりデータの抽出精度が向上することが示唆された。
論文 参考訳(メタデータ) (2025-02-04T15:47:47Z) - OmniEval: An Omnidirectional and Automatic RAG Evaluation Benchmark in Financial Domain [62.89809156574998]
金融分野において全方向自動RAGベンチマークであるOmniEvalを導入する。
我々のベンチマークは多次元評価フレームワークによって特徴づけられる。
実験では、広範囲なテストデータセットを含むOmniEvalの包括性を実証した。
論文 参考訳(メタデータ) (2024-12-17T15:38:42Z) - EvalGIM: A Library for Evaluating Generative Image Models [26.631349186382664]
テキストから画像への生成モデルを評価するためのライブラリであるEvalGIMを紹介する。
EvalGIMは、品質、多様性、一貫性を測定するために使用されるデータセットとメトリクスを幅広くサポートする。
EvalGIMには、テキストから画像への生成モデルのための2つの新しい分析手法を導入する評価演習も含まれている。
論文 参考訳(メタデータ) (2024-12-13T23:15:35Z) - The BrowserGym Ecosystem for Web Agent Research [151.90034093362343]
BrowserGymエコシステムは、Webエージェントの効率的な評価とベンチマークの必要性の高まりに対処する。
本稿では,Webエージェント研究のためのBrowserGymベースの拡張エコシステムを提案する。
大規模なマルチベンチマークWebエージェント実験を初めて実施し、6つのWebエージェントベンチマークで6つの最先端LCMの性能を比較した。
論文 参考訳(メタデータ) (2024-12-06T23:43:59Z) - MME-Survey: A Comprehensive Survey on Evaluation of Multimodal LLMs [97.94579295913606]
MLLM(Multimodal Large Language Models)は、産業と学術の両方から注目を集めている。
開発プロセスでは、モデルの改善に関する直感的なフィードバックとガイダンスを提供するため、評価が重要である。
この研究は、研究者に異なるニーズに応じてMLLMを効果的に評価する方法を簡単に把握し、より良い評価方法を促すことを目的としている。
論文 参考訳(メタデータ) (2024-11-22T18:59:54Z) - Adversarial Multi-Agent Evaluation of Large Language Models through Iterative Debates [0.0]
本稿では,対話エージェントのアンサンブル内で,大規模言語モデル(LLM)を提唱者として解釈するフレームワークを提案する。
このアプローチは、従来の人間ベースの評価や自動メトリクスと比較して、よりダイナミックで包括的な評価プロセスを提供します。
論文 参考訳(メタデータ) (2024-10-07T00:22:07Z) - RAG-Modulo: Solving Sequential Tasks using Experience, Critics, and Language Models [5.0741409008225755]
大規模言語モデル(LLM)は、ロボットの課題を解決するための有望なツールとして登場した。
既存のLSMベースのエージェントは、過去の相互作用を維持および学習する能力に欠ける。
RAG-Modulo は,過去のインタラクションを記憶した LLM ベースのエージェントを強化し,エージェントの判断を評価するための批判を取り入れたフレームワークである。
論文 参考訳(メタデータ) (2024-09-18T20:03:32Z) - Benchmark Self-Evolving: A Multi-Agent Framework for Dynamic LLM
Evaluation [51.99752147380505]
本稿では,大規模言語モデル(LLM)を動的に評価するベンチマーク自己進化フレームワークを提案する。
マルチエージェントシステムを用いて、元のインスタンスのコンテキストや質問を操作し、信頼性の高い新しいインスタンスをフレーミングする。
我々のフレームワークは、異なるモデル間の性能の相違を拡大し、様々なタスクで同じモデル内で性能の相違を拡大します。
論文 参考訳(メタデータ) (2024-02-18T03:40:06Z) - F-Eval: Assessing Fundamental Abilities with Refined Evaluation Methods [102.98899881389211]
F-Evalは、表現、常識、論理などの基本能力を評価するためのバイリンガル評価ベンチマークである。
参照不要な主観的タスクに対しては,APIモデルによるスコアの代替として,新たな評価手法を考案する。
論文 参考訳(メタデータ) (2024-01-26T13:55:32Z) - AgentBoard: An Analytical Evaluation Board of Multi-turn LLM Agents [76.95062553043607]
大きな言語モデル(LLM)を評価することは、その能力を理解し、実践的なアプリケーションへの統合を促進するために不可欠である。
本稿では,LLMエージェントの分析的評価に適したオープンソース評価フレームワークであるAgentBoardを紹介する。
論文 参考訳(メタデータ) (2024-01-24T01:51:00Z) - Don't Make Your LLM an Evaluation Benchmark Cheater [142.24553056600627]
大規模言語モデル(LLM)は人工知能のフロンティアを大幅に進歩させ、モデルキャパシティを著しく向上させた。
モデル性能を評価するために, LLMの能力レベルを測定するための評価ベンチマークを構築するのが典型的な方法である。
評価ベンチマークを用いて不適切なリスクと影響について検討し,評価結果を誤って解釈する。
論文 参考訳(メタデータ) (2023-11-03T14:59:54Z) - From Static Benchmarks to Adaptive Testing: Psychometrics in AI Evaluation [60.14902811624433]
本稿では,静的評価手法から適応テストへのパラダイムシフトについて論じる。
これには、ベンチマークで各テスト項目の特性と価値を推定し、リアルタイムでアイテムを動的に調整することが含まれる。
我々は、AI評価にサイコメトリックを採用する現在のアプローチ、アドバンテージ、そして根底にある理由を分析します。
論文 参考訳(メタデータ) (2023-06-18T09:54:33Z) - Domain-Expanded ASTE: Rethinking Generalization in Aspect Sentiment Triplet Extraction [67.54420015049732]
Aspect Sentiment Triplet extract (ASTE) は感情分析における課題であり、人間の感情に対するきめ細かい洞察を提供することを目的としている。
既存のベンチマークは2つのドメインに限定されており、目に見えないドメイン上でのモデルパフォーマンスを評価しない。
各種ドメインのサンプルに注釈を付けることでドメイン拡張ベンチマークを導入し,ドメイン内設定とドメイン外設定の両方でモデルの評価を可能にする。
論文 参考訳(メタデータ) (2023-05-23T18:01:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。