Breaking the Reviewer: Assessing the Vulnerability of Large Language Models in Automated Peer Review Under Textual Adversarial Attacks
- URL: http://arxiv.org/abs/2506.11113v1
- Date: Sun, 08 Jun 2025 16:57:38 GMT
- Title: Breaking the Reviewer: Assessing the Vulnerability of Large Language Models in Automated Peer Review Under Textual Adversarial Attacks
- Authors: Tzu-Ling Lin, Wei-Chih Chen, Teng-Fang Hsiao, Hou-I Liu, Ya-Hsin Yeh, Yu Kai Chan, Wen-Sheng Lien, Po-Yen Kuo, Philip S. Yu, Hong-Han Shuai,
- Abstract summary: This paper investigates the robustness of large language models (LLMs) used as automated reviewers in the presence of adversarial attacks.<n>Our evaluation reveals significant vulnerabilities, as text manipulations can distort LLM assessments.<n>Our findings emphasize the importance of addressing adversarial risks to ensure AI strengthens, rather than compromises, the integrity of scholarly communication.
- Score: 38.04549194339918
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Peer review is essential for maintaining academic quality, but the increasing volume of submissions places a significant burden on reviewers. Large language models (LLMs) offer potential assistance in this process, yet their susceptibility to textual adversarial attacks raises reliability concerns. This paper investigates the robustness of LLMs used as automated reviewers in the presence of such attacks. We focus on three key questions: (1) The effectiveness of LLMs in generating reviews compared to human reviewers. (2) The impact of adversarial attacks on the reliability of LLM-generated reviews. (3) Challenges and potential mitigation strategies for LLM-based review. Our evaluation reveals significant vulnerabilities, as text manipulations can distort LLM assessments. We offer a comprehensive evaluation of LLM performance in automated peer reviewing and analyze its robustness against adversarial attacks. Our findings emphasize the importance of addressing adversarial risks to ensure AI strengthens, rather than compromises, the integrity of scholarly communication.
Related papers
- ROSE: Toward Reality-Oriented Safety Evaluation of Large Language Models [60.28667314609623]
Large Language Models (LLMs) are increasingly deployed as black-box components in real-world applications.<n>We propose Reality-Oriented Safety Evaluation (ROSE), a novel framework that uses multi-objective reinforcement learning to fine-tune an adversarial LLM.
arXiv Detail & Related papers (2025-06-17T10:55:17Z) - Investigating the Vulnerability of LLM-as-a-Judge Architectures to Prompt-Injection Attacks [0.0]
Large Language Models (LLMs) are increasingly employed as evaluators (LLM-as-a-Judge) for assessing the quality of machine-generated text.<n>This paper investigates the vulnerability of LLM-as-a-Judge architectures to prompt-injection attacks.
arXiv Detail & Related papers (2025-05-19T16:51:12Z) - LLM-Safety Evaluations Lack Robustness [58.334290876531036]
We argue that current safety alignment research efforts for large language models are hindered by many intertwined sources of noise.<n>We propose a set of guidelines for reducing noise and bias in evaluations of future attack and defense papers.
arXiv Detail & Related papers (2025-03-04T12:55:07Z) - Human-Readable Adversarial Prompts: An Investigation into LLM Vulnerabilities Using Situational Context [45.821481786228226]
We show that situation-driven adversarial full-prompts that leverage situational context are effective but much harder to detect.<n>We developed attacks that use movie scripts as situational contextual frameworks.<n>We enhanced the AdvPrompter framework with p-nucleus sampling to generate diverse human-readable adversarial texts.
arXiv Detail & Related papers (2024-12-20T21:43:52Z) - Are We There Yet? Revealing the Risks of Utilizing Large Language Models in Scholarly Peer Review [66.73247554182376]
Large language models (LLMs) have led to their integration into peer review.<n>The unchecked adoption of LLMs poses significant risks to the integrity of the peer review system.<n>We show that manipulating 5% of the reviews could potentially cause 12% of the papers to lose their position in the top 30% rankings.
arXiv Detail & Related papers (2024-12-02T16:55:03Z) - Characterizing and Evaluating the Reliability of LLMs against Jailbreak Attacks [23.782566331783134]
We focus on 10 cutting-edge jailbreak strategies across three categories, 1525 questions from 61 specific harmful categories, and 13 popular LLMs.
We adopt multi-dimensional metrics such as Attack Success Rate (ASR), Toxicity Score, Fluency, Token Length, and Grammatical Errors to thoroughly assess the LLMs' outputs under jailbreak.
We explore the relationships among the models, attack strategies, and types of harmful content, as well as the correlations between the evaluation metrics, which proves the validity of our multifaceted evaluation framework.
arXiv Detail & Related papers (2024-08-18T01:58:03Z) - Assessing Adversarial Robustness of Large Language Models: An Empirical Study [24.271839264950387]
Large Language Models (LLMs) have revolutionized natural language processing, but their robustness against adversarial attacks remains a critical concern.
We present a novel white-box style attack approach that exposes vulnerabilities in leading open-source LLMs, including Llama, OPT, and T5.
arXiv Detail & Related papers (2024-05-04T22:00:28Z) - Is LLM-as-a-Judge Robust? Investigating Universal Adversarial Attacks on Zero-shot LLM Assessment [8.948475969696075]
Large Language Models (LLMs) are powerful zero-shot assessors used in real-world situations such as assessing written exams and benchmarking systems.
We show that short universal adversarial phrases can be deceived to judge LLMs to predict inflated scores.
It is found that judge-LLMs are significantly more susceptible to these adversarial attacks when used for absolute scoring.
arXiv Detail & Related papers (2024-02-21T18:55:20Z) - CriticEval: Evaluating Large Language Model as Critic [110.29766259843453]
CriticEval is a novel benchmark designed to comprehensively and reliably evaluate critique ability of Large Language Models.
To ensure the comprehensiveness, CriticEval evaluates critique ability from four dimensions across nine diverse task scenarios.
To ensure the reliability, a large number of critiques are annotated to serve as references.
arXiv Detail & Related papers (2024-02-21T12:38:59Z) - A Survey on Evaluation of Large Language Models [87.60417393701331]
Large language models (LLMs) are gaining increasing popularity in both academia and industry.
This paper focuses on three key dimensions: what to evaluate, where to evaluate, and how to evaluate.
arXiv Detail & Related papers (2023-07-06T16:28:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.