Benchmarking Foundation Speech and Language Models for Alzheimer's Disease and Related Dementia Detection from Spontaneous Speech
- URL: http://arxiv.org/abs/2506.11119v1
- Date: Mon, 09 Jun 2025 17:52:31 GMT
- Title: Benchmarking Foundation Speech and Language Models for Alzheimer's Disease and Related Dementia Detection from Spontaneous Speech
- Authors: Jingyu Li, Lingchao Mao, Hairong Wang, Zhendong Wang, Xi Mao, Xuelei Sherry Ni,
- Abstract summary: Alzheimer's disease and related dementias are progressive neurodegenerative conditions.<n>Spontaneous speech contains rich acoustic and linguistic markers that may serve as non-invasive biomarkers.<n>Foundation models, pre-trained on large-scale audio or text data, produce high-dimensional embeddings encoding contextual and acoustic features.
- Score: 14.936023751079654
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Background: Alzheimer's disease and related dementias (ADRD) are progressive neurodegenerative conditions where early detection is vital for timely intervention and care. Spontaneous speech contains rich acoustic and linguistic markers that may serve as non-invasive biomarkers for cognitive decline. Foundation models, pre-trained on large-scale audio or text data, produce high-dimensional embeddings encoding contextual and acoustic features. Methods: We used the PREPARE Challenge dataset, which includes audio recordings from over 1,600 participants with three cognitive statuses: healthy control (HC), mild cognitive impairment (MCI), and Alzheimer's Disease (AD). We excluded non-English, non-spontaneous, or poor-quality recordings. The final dataset included 703 (59.13%) HC, 81 (6.81%) MCI, and 405 (34.06%) AD cases. We benchmarked a range of open-source foundation speech and language models to classify cognitive status into the three categories. Results: The Whisper-medium model achieved the highest performance among speech models (accuracy = 0.731, AUC = 0.802). Among language models, BERT with pause annotation performed best (accuracy = 0.662, AUC = 0.744). ADRD detection using state-of-the-art automatic speech recognition (ASR) model-generated audio embeddings outperformed others. Including non-semantic features like pause patterns consistently improved text-based classification. Conclusion: This study introduces a benchmarking framework using foundation models and a clinically relevant dataset. Acoustic-based approaches -- particularly ASR-derived embeddings -- demonstrate strong potential for scalable, non-invasive, and cost-effective early detection of ADRD.
Related papers
- Dementia Insights: A Context-Based MultiModal Approach [0.3749861135832073]
Early detection is crucial for timely interventions that may slow disease progression.<n>Large pre-trained models (LPMs) for text and audio have shown promise in identifying cognitive impairments.<n>This study proposes a context-based multimodal method, integrating both text and audio data using the best-performing LPMs.
arXiv Detail & Related papers (2025-03-03T06:46:26Z) - Automatically measuring speech fluency in people with aphasia: first
achievements using read-speech data [55.84746218227712]
This study aims at assessing the relevance of a signalprocessingalgorithm, initially developed in the field of language acquisition, for the automatic measurement of speech fluency.
arXiv Detail & Related papers (2023-08-09T07:51:40Z) - Leveraging Pretrained Representations with Task-related Keywords for
Alzheimer's Disease Detection [69.53626024091076]
Alzheimer's disease (AD) is particularly prominent in older adults.
Recent advances in pre-trained models motivate AD detection modeling to shift from low-level features to high-level representations.
This paper presents several efficient methods to extract better AD-related cues from high-level acoustic and linguistic features.
arXiv Detail & Related papers (2023-03-14T16:03:28Z) - Exploiting prompt learning with pre-trained language models for
Alzheimer's Disease detection [70.86672569101536]
Early diagnosis of Alzheimer's disease (AD) is crucial in facilitating preventive care and to delay further progression.
This paper investigates the use of prompt-based fine-tuning of PLMs that consistently uses AD classification errors as the training objective function.
arXiv Detail & Related papers (2022-10-29T09:18:41Z) - Acoustic-Linguistic Features for Modeling Neurological Task Score in
Alzheimer's [1.290382979353427]
Natural language processing and machine learning provide promising techniques for reliably detecting Alzheimer's disease.
We compare and contrast the performance of ten linear regression models for predicting Mini-Mental Status exam scores.
We find that, for the given task, handcrafted linguistic features are more significant than acoustic and learned features.
arXiv Detail & Related papers (2022-09-13T15:35:31Z) - Exploring linguistic feature and model combination for speech
recognition based automatic AD detection [61.91708957996086]
Speech based automatic AD screening systems provide a non-intrusive and more scalable alternative to other clinical screening techniques.
Scarcity of specialist data leads to uncertainty in both model selection and feature learning when developing such systems.
This paper investigates the use of feature and model combination approaches to improve the robustness of domain fine-tuning of BERT and Roberta pre-trained text encoders.
arXiv Detail & Related papers (2022-06-28T05:09:01Z) - Conformer Based Elderly Speech Recognition System for Alzheimer's
Disease Detection [62.23830810096617]
Early diagnosis of Alzheimer's disease (AD) is crucial in facilitating preventive care to delay further progression.
This paper presents the development of a state-of-the-art Conformer based speech recognition system built on the DementiaBank Pitt corpus for automatic AD detection.
arXiv Detail & Related papers (2022-06-23T12:50:55Z) - Exploiting Cross-domain And Cross-Lingual Ultrasound Tongue Imaging
Features For Elderly And Dysarthric Speech Recognition [55.25565305101314]
Articulatory features are invariant to acoustic signal distortion and have been successfully incorporated into automatic speech recognition systems.
This paper presents a cross-domain and cross-lingual A2A inversion approach that utilizes the parallel audio and ultrasound tongue imaging (UTI) data of the 24-hour TaL corpus in A2A model pre-training.
Experiments conducted on three tasks suggested incorporating the generated articulatory features consistently outperformed the baseline TDNN and Conformer ASR systems.
arXiv Detail & Related papers (2022-06-15T07:20:28Z) - Influence of ASR and Language Model on Alzheimer's Disease Detection [2.4698886064068555]
We analyse the usage of a SotA ASR system to transcribe participant's spoken descriptions from a picture.
We study the influence of a language model -- which tends to correct non-standard sequences of words -- with the lack of language model to decode the hypothesis from the ASR.
The proposed system combines acoustic -- based on prosody and voice quality -- and lexical features based on the first occurrence of the most common words.
arXiv Detail & Related papers (2021-09-20T10:41:39Z) - Alzheimer's Disease Detection from Spontaneous Speech through Combining
Linguistic Complexity and (Dis)Fluency Features with Pretrained Language
Models [27.960536826774923]
In this paper, we combined linguistic complexity and (dis)fluency features with pretrained language models for the task of Alzheimer's disease detection.
An accuracy of 83.1% was achieved on the test set, which amounts to an improvement of 4.23% over the baseline model.
arXiv Detail & Related papers (2021-06-16T10:50:18Z) - Comparing Natural Language Processing Techniques for Alzheimer's
Dementia Prediction in Spontaneous Speech [1.2805268849262246]
Alzheimer's Dementia (AD) is an incurable, debilitating, and progressive neurodegenerative condition that affects cognitive function.
The Alzheimer's Dementia Recognition through Spontaneous Speech task offers acoustically pre-processed and balanced datasets for the classification and prediction of AD.
arXiv Detail & Related papers (2020-06-12T17:51:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.