論文の概要: Grids Often Outperform Implicit Neural Representations
- arxiv url: http://arxiv.org/abs/2506.11139v1
- Date: Tue, 10 Jun 2025 23:52:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-16 17:50:49.503814
- Title: Grids Often Outperform Implicit Neural Representations
- Title(参考訳): インプシブ・ニューラル表現に優れた格子
- Authors: Namhoon Kim, Sara Fridovich-Keil,
- Abstract要約: Inlicit Neural Representations (INRs)は近年、目覚ましい結果を示しているが、その能力、暗黙のバイアス、スケーリングの振る舞いはよく分かっていない。
本研究では,2次元および3次元の実信号と合成信号の組にまたがる多様なINRの性能について検討する。
多くのタスクにおいて、列車が高速かつ高品質な単純な正規化されたグリッドが、同じ数のパラメータを持つINRよりも高速であることがわかった。
- 参考スコア(独自算出の注目度): 5.29241182750977
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Implicit Neural Representations (INRs) have recently shown impressive results, but their fundamental capacity, implicit biases, and scaling behavior remain poorly understood. We investigate the performance of diverse INRs across a suite of 2D and 3D real and synthetic signals with varying effective bandwidth, as well as both overfitting and generalization tasks including tomography, super-resolution, and denoising. By stratifying performance according to model size as well as signal type and bandwidth, our results shed light on how different INR and grid representations allocate their capacity. We find that, for most tasks and signals, a simple regularized grid with interpolation trains faster and to higher quality than any INR with the same number of parameters. We also find limited settings where INRs outperform grids -- namely fitting signals with underlying lower-dimensional structure such as shape contours -- to guide future use of INRs towards the most advantageous applications. Code and synthetic signals used in our analysis are available at https://github.com/voilalab/INR-benchmark.
- Abstract(参考訳): Inlicit Neural Representations (INRs)は近年、目覚ましい結果を示しているが、その基本的な能力、暗黙のバイアス、スケーリングの振る舞いはよく分かっていない。
本研究では,2次元および3次元実・合成信号の組間における多彩なINRの性能と,トモグラフィ,超解像,復調といった過度な処理と一般化の両課題について検討する。
モデルのサイズや信号のタイプや帯域幅に応じて性能を階層化することで,INRとグリッドの差分表現がキャパシティをどの程度割り当てるかを明らかにした。
多くのタスクや信号に対して、補間列車による単純な正規化グリッドは、同じ数のパラメータを持つINRよりも高速かつ高品質であることが分かる。
また、INRがグリッド、すなわち形状輪郭などの下層の低次元構造に適合する信号よりも優れており、INRの将来的な使用を最も有利なアプリケーションに導くための制限された設定も見出す。
我々の分析で使用されるコードと合成信号はhttps://github.com/voilalab/INR-benchmark.comで入手できる。
関連論文リスト
- SL$^{2}$A-INR: Single-Layer Learnable Activation for Implicit Neural Representation [6.572456394600755]
Inlicit Neural Representation (INR)は、ニューラルネットワークを利用して、座標入力を対応する属性に変換することで、視覚関連領域において大きな進歩をもたらした。
我々は,INRアーキテクチャに新しいアプローチを導入することで,これらの課題を緩和できることを示す。
具体的には,シングルレイヤの学習可能なアクティベーション関数と従来のReLUアクティベーションを用いた合成を組み合わせたハイブリッドネットワークSL$2$A-INRを提案する。
論文 参考訳(メタデータ) (2024-09-17T02:02:15Z) - Implicit Neural Representations with Fourier Kolmogorov-Arnold Networks [4.499833362998488]
入射神経表現(INR)は、複雑な信号の連続的および分解非依存的な表現を提供するためにニューラルネットワークを使用する。
提案したFKANは、第1層のフーリエ級数としてモデル化された学習可能なアクティベーション関数を用いて、タスク固有の周波数成分を効果的に制御し、学習する。
実験結果から,提案したFKANモデルは,最先端の3つのベースラインスキームよりも優れていることがわかった。
論文 参考訳(メタデータ) (2024-09-14T05:53:33Z) - Modality-Agnostic Variational Compression of Implicit Neural
Representations [96.35492043867104]
Inlicit Neural Representation (INR) としてパラメータ化されたデータの関数的ビューに基づくモーダリティ非依存型ニューラル圧縮アルゴリズムを提案する。
潜時符号化と疎性の間のギャップを埋めて、ソフトゲーティング機構に非直線的にマッピングされたコンパクト潜時表現を得る。
このような潜在表現のデータセットを得た後、ニューラル圧縮を用いてモーダリティ非依存空間におけるレート/歪みトレードオフを直接最適化する。
論文 参考訳(メタデータ) (2023-01-23T15:22:42Z) - Signal Processing for Implicit Neural Representations [80.38097216996164]
Inlicit Neural Representation (INR)は、マルチ層パーセプトロンを介して連続したマルチメディアデータを符号化する。
既存の作業は、その離散化されたインスタンスの処理を通じて、そのような連続的な表現を操作する。
本稿では,INSP-Netと呼ばれる暗黙的ニューラル信号処理ネットワークを提案する。
論文 参考訳(メタデータ) (2022-10-17T06:29:07Z) - Effective Invertible Arbitrary Image Rescaling [77.46732646918936]
Invertible Neural Networks (INN)は、ダウンスケーリングとアップスケーリングのサイクルを共同で最適化することにより、アップスケーリングの精度を大幅に向上させることができる。
本研究の1つのモデルのみをトレーニングすることにより、任意の画像再スケーリングを実現するために、単純で効果的な非可逆的再スケーリングネットワーク(IARN)を提案する。
LR出力の知覚品質を損なうことなく、双方向任意再スケーリングにおいて最先端(SOTA)性能を実現する。
論文 参考訳(メタデータ) (2022-09-26T22:22:30Z) - Learning Frequency-aware Dynamic Network for Efficient Super-Resolution [56.98668484450857]
本稿では、離散コサイン変換(dct)領域の係数に応じて入力を複数の部分に分割する新しい周波数認識動的ネットワークについて検討する。
実際、高周波部は高価な操作で処理され、低周波部は計算負荷を軽減するために安価な操作が割り当てられる。
ベンチマークSISRモデルおよびデータセット上での実験は、周波数認識動的ネットワークが様々なSISRニューラルネットワークに使用できることを示している。
論文 参考訳(メタデータ) (2021-03-15T12:54:26Z) - Deep Networks for Direction-of-Arrival Estimation in Low SNR [89.45026632977456]
我々は,真の配列多様体行列の変異チャネルデータから学習した畳み込みニューラルネットワーク(CNN)を導入する。
我々は低SNR体制でCNNを訓練し、すべてのSNRでDoAを予測する。
私たちの堅牢なソリューションは、ワイヤレスアレイセンサーから音響マイクロフォンやソナーまで、いくつかの分野に適用できます。
論文 参考訳(メタデータ) (2020-11-17T12:52:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。