論文の概要: SL$^{2}$A-INR: Single-Layer Learnable Activation for Implicit Neural Representation
- arxiv url: http://arxiv.org/abs/2409.10836v3
- Date: Fri, 21 Mar 2025 20:57:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-25 14:30:32.980559
- Title: SL$^{2}$A-INR: Single-Layer Learnable Activation for Implicit Neural Representation
- Title(参考訳): SL$^{2}$A-INR: 入射神経表現のための単層学習可能活性化
- Authors: Moein Heidari, Reza Rezaeian, Reza Azad, Dorit Merhof, Hamid Soltanian-Zadeh, Ilker Hacihaliloglu,
- Abstract要約: Inlicit Neural Representation (INR)は、ニューラルネットワークを利用して、座標入力を対応する属性に変換することで、視覚関連領域において大きな進歩をもたらした。
我々は,INRアーキテクチャに新しいアプローチを導入することで,これらの課題を緩和できることを示す。
具体的には,シングルレイヤの学習可能なアクティベーション関数と従来のReLUアクティベーションを用いた合成を組み合わせたハイブリッドネットワークSL$2$A-INRを提案する。
- 参考スコア(独自算出の注目度): 6.572456394600755
- License:
- Abstract: Implicit Neural Representation (INR), leveraging a neural network to transform coordinate input into corresponding attributes, has recently driven significant advances in several vision-related domains. However, the performance of INR is heavily influenced by the choice of the nonlinear activation function used in its multilayer perceptron (MLP) architecture. To date, multiple nonlinearities have been investigated, but current INRs still face limitations in capturing high-frequency components and diverse signal types. We show that these challenges can be alleviated by introducing a novel approach in INR architecture. Specifically, we propose SL$^{2}$A-INR, a hybrid network that combines a single-layer learnable activation function with an MLP that uses traditional ReLU activations. Our method performs superior across diverse tasks, including image representation, 3D shape reconstruction, and novel view synthesis. Through comprehensive experiments, SL$^{2}$A-INR sets new benchmarks in accuracy, quality, and robustness for INR. Our Code is publicly available on~\href{https://github.com/Iceage7/SL2A-INR}{\textcolor{magenta}{GitHub}}.
- Abstract(参考訳): Inlicit Neural Representation (INR)は、ニューラルネットワークを利用して、座標入力を対応する属性に変換する。
しかし、INRの性能は多層パーセプトロン(MLP)アーキテクチャで使用される非線形活性化関数の選択に大きく影響されている。
これまで、複数の非線形性について研究されてきたが、現在のINRは高周波成分と多様な信号タイプを捕捉する際の制限に直面している。
我々は,INRアーキテクチャに新しいアプローチを導入することで,これらの課題を緩和できることを示す。
具体的には,従来のReLUアクティベーションを用いたMLPと単一層学習可能なアクティベーション関数を組み合わせたハイブリッドネットワークSL$^{2}$A-INRを提案する。
提案手法は,画像表現,3次元形状再構成,新しいビュー合成など,多様なタスクに優れる。
包括的な実験を通じて、SL$^{2}$A-INRはINRの精度、品質、堅牢性の新しいベンチマークを設定する。
私たちのコードは、~\href{https://github.com/Iceage7/SL2A-INR}{\textcolor{magenta}{GitHub}}で公開されています。
関連論文リスト
- Learning Transferable Features for Implicit Neural Representations [37.12083836826336]
Inlicit Neural representations (INR) は、逆問題やニューラルレンダリングなど、様々な応用で成功している。
我々は新しいINRトレーニングフレームワークSTRAINERを導入し、新しい信号にINRを適合させるトランスファー可能な特徴を学習する。
我々は,複数の領域内および領域外信号適合タスクおよび逆問題に対するSTRAINERの評価を行った。
論文 参考訳(メタデータ) (2024-09-15T00:53:44Z) - Implicit Neural Representations with Fourier Kolmogorov-Arnold Networks [4.499833362998488]
入射神経表現(INR)は、複雑な信号の連続的および分解非依存的な表現を提供するためにニューラルネットワークを使用する。
提案したFKANは、第1層のフーリエ級数としてモデル化された学習可能なアクティベーション関数を用いて、タスク固有の周波数成分を効果的に制御し、学習する。
実験結果から,提案したFKANモデルは,最先端の3つのベースラインスキームよりも優れていることがわかった。
論文 参考訳(メタデータ) (2024-09-14T05:53:33Z) - Conv-INR: Convolutional Implicit Neural Representation for Multimodal Visual Signals [2.7195102129095003]
Inlicit Neural representation (INR) は近年,信号表現の有望なパラダイムとして浮上している。
本稿では,畳み込みに基づく最初のINRモデルであるConv-INRを提案する。
論文 参考訳(メタデータ) (2024-06-06T16:52:42Z) - INCODE: Implicit Neural Conditioning with Prior Knowledge Embeddings [4.639495398851869]
Inlicit Neural Representation (INR)は、複雑なデータの連続的かつ滑らかな表現を提供するためにニューラルネットワークを活用することで、信号表現に革命をもたらした。
InCODEは、深い事前知識を用いて、INRにおける正弦波ベースの活性化関数の制御を強化する新しいアプローチである。
提案手法は表現力に優れるだけでなく,音声,画像,3次元形状復元などの複雑な課題に対処する能力も拡張している。
論文 参考訳(メタデータ) (2023-10-28T23:16:49Z) - Modality-Agnostic Variational Compression of Implicit Neural
Representations [96.35492043867104]
Inlicit Neural Representation (INR) としてパラメータ化されたデータの関数的ビューに基づくモーダリティ非依存型ニューラル圧縮アルゴリズムを提案する。
潜時符号化と疎性の間のギャップを埋めて、ソフトゲーティング機構に非直線的にマッピングされたコンパクト潜時表現を得る。
このような潜在表現のデータセットを得た後、ニューラル圧縮を用いてモーダリティ非依存空間におけるレート/歪みトレードオフを直接最適化する。
論文 参考訳(メタデータ) (2023-01-23T15:22:42Z) - Versatile Neural Processes for Learning Implicit Neural Representations [57.090658265140384]
本稿では,近似関数の能力を大幅に向上させるVersatile Neural Processs (VNP)を提案する。
具体的には、より少ない情報的コンテキストトークンを生成するボトルネックエンコーダを導入し、高い計算コストを軽減した。
提案したVNPが1D, 2D, 3D信号を含む様々なタスクに対して有効であることを示す。
論文 参考訳(メタデータ) (2023-01-21T04:08:46Z) - DINER: Disorder-Invariant Implicit Neural Representation [33.10256713209207]
入射神経表現(INR)は、信号の属性を対応する座標の関数として特徴づける。
本稿では、従来のINRバックボーンにハッシュテーブルを付加することにより、障害不変な暗黙的神経表現(DINER)を提案する。
論文 参考訳(メタデータ) (2022-11-15T03:34:24Z) - Signal Processing for Implicit Neural Representations [80.38097216996164]
Inlicit Neural Representation (INR)は、マルチ層パーセプトロンを介して連続したマルチメディアデータを符号化する。
既存の作業は、その離散化されたインスタンスの処理を通じて、そのような連続的な表現を操作する。
本稿では,INSP-Netと呼ばれる暗黙的ニューラル信号処理ネットワークを提案する。
論文 参考訳(メタデータ) (2022-10-17T06:29:07Z) - Over-and-Under Complete Convolutional RNN for MRI Reconstruction [57.95363471940937]
MR画像再構成のための最近のディープラーニングに基づく手法は、通常、汎用的なオートエンコーダアーキテクチャを利用する。
OUCR(Over-and-Under Complete Convolu?tional Recurrent Neural Network)を提案する。
提案手法は, トレーニング可能なパラメータの少ない圧縮されたセンシングと, 一般的なディープラーニングに基づく手法に対して, 大幅な改善を実現する。
論文 参考訳(メタデータ) (2021-06-16T15:56:34Z) - Learning Deep Interleaved Networks with Asymmetric Co-Attention for
Image Restoration [65.11022516031463]
本稿では,高品質(本社)画像再構成のために,異なる状態の情報をどのように組み合わせるべきかを学習するディープインターリーブドネットワーク(DIN)を提案する。
本稿では,各インターリーブノードにアタッチメントされた非対称なコアテンション(AsyCA)を提案し,その特性依存性をモデル化する。
提案したDINはエンドツーエンドで訓練でき、様々な画像復元タスクに適用できる。
論文 参考訳(メタデータ) (2020-10-29T15:32:00Z) - Iterative Network for Image Super-Resolution [69.07361550998318]
単一画像超解像(SISR)は、最近の畳み込みニューラルネットワーク(CNN)の発展により、大幅に活性化されている。
本稿では、従来のSISRアルゴリズムに関する新たな知見を提供し、反復最適化に依存するアプローチを提案する。
反復最適化の上に,新しい反復型超解像ネットワーク (ISRN) を提案する。
論文 参考訳(メタデータ) (2020-05-20T11:11:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。