From over-reliance to smart integration: using Large-Language Models as translators between specialized modeling and simulation tools
- URL: http://arxiv.org/abs/2506.11141v1
- Date: Wed, 11 Jun 2025 02:39:08 GMT
- Title: From over-reliance to smart integration: using Large-Language Models as translators between specialized modeling and simulation tools
- Authors: Philippe J. Giabbanelli, John Beverley, Istvan David, Andreas Tolk,
- Abstract summary: Large Language Models (LLMs) offer transformative potential for Modeling & Simulation (M&S)<n>Over-reliance risks compromising quality due to ambiguities, logical shortcuts, and hallucinations.<n>This paper advocates integrating LLMs as translators between specialized tools to mitigate complexity in M&S tasks.
- Score: 0.3749861135832073
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Large Language Models (LLMs) offer transformative potential for Modeling & Simulation (M&S) through natural language interfaces that simplify workflows. However, over-reliance risks compromising quality due to ambiguities, logical shortcuts, and hallucinations. This paper advocates integrating LLMs as middleware or translators between specialized tools to mitigate complexity in M&S tasks. Acting as translators, LLMs can enhance interoperability across multi-formalism, multi-semantics, and multi-paradigm systems. We address two key challenges: identifying appropriate languages and tools for modeling and simulation tasks, and developing efficient software architectures that integrate LLMs without performance bottlenecks. To this end, the paper explores LLM-mediated workflows, emphasizes structured tool integration, and recommends Low-Rank Adaptation-based architectures for efficient task-specific adaptations. This approach ensures LLMs complement rather than replace specialized tools, fostering high-quality, reliable M&S processes.
Related papers
- Training-free LLM Merging for Multi-task Learning [74.93025750111019]
Hi-Merging is a training-free method for unifying different specialized LLMs into a single model.<n>Experiments on multiple-choice and question-answering tasks in both Chinese and English validate Hi-Merging's ability for multi-task learning.
arXiv Detail & Related papers (2025-06-14T07:21:11Z) - EIFBENCH: Extremely Complex Instruction Following Benchmark for Large Language Models [65.48902212293903]
We present the Extremely Complex Instruction Following Benchmark (EIFBENCH) for evaluating large language models (LLMs)<n>EIFBENCH includes multi-task scenarios that enable comprehensive assessment across diverse task types concurrently.<n>We also propose the Segment Policy Optimization (SegPO) algorithm to enhance the LLM's ability to accurately fulfill multi-task workflow.
arXiv Detail & Related papers (2025-06-10T02:39:55Z) - Dense Communication between Language Models [41.631010796783706]
This paper proposes a novel paradigm of direct dense vector communication between Large Language Models (LLMs)<n>Our approach eliminates the unnecessary embedding and de-embedding steps when LLM interact with another, enabling more efficient information transfer.<n>We train a LMNet that achieves comparable performance with LLMs in similar size with only less than 0.1% training cost.
arXiv Detail & Related papers (2025-05-19T05:56:06Z) - Collaboration is all you need: LLM Assisted Safe Code Translation [4.3764649156831235]
UniTranslator is a framework that re-imagines code translation as a collaborative endeavor among multiple, compact LLMs.<n>By orchestrating the interaction of specialized agents, UniTranslator achieves a level of accuracy and efficiency that rivals larger, monolithic models.
arXiv Detail & Related papers (2025-03-14T09:42:07Z) - LUSIFER: Language Universal Space Integration for Enhanced Multilingual Embeddings with Large Language Models [89.13128402847943]
We present LUSIFER, a novel zero-shot approach that adapts LLM-based embedding models for multilingual tasks without requiring multilingual supervision.<n>LUSIFER's architecture combines a multilingual encoder, serving as a language-universal learner, with an LLM-based embedding model optimized for embedding-specific tasks.<n>We introduce a new benchmark encompassing 5 primary embedding tasks, 123 diverse datasets, and coverage across 14 languages.
arXiv Detail & Related papers (2025-01-01T15:43:07Z) - Large Language Models for Constructing and Optimizing Machine Learning Workflows: A Survey [4.917456871628609]
Building effective machine learning (ML) to address complex tasks is a primary focus of the Automatic ML (AutoML) community.<n>Recently, the integration of Large Language Models (LLMs) into ML has shown great potential for automating and enhancing various stages of the ML pipeline.
arXiv Detail & Related papers (2024-11-11T21:54:26Z) - Multi-Programming Language Sandbox for LLMs [78.99934332554963]
out-of-the-box multi-programming language sandbox designed to provide unified and comprehensive feedback from compiler and analysis tools for Large Language Models (LLMs)
It can automatically identify the programming language of the code, compiling and executing it within an isolated sub-sandbox to ensure safety and stability.
arXiv Detail & Related papers (2024-10-30T14:46:43Z) - LLaVA-KD: A Framework of Distilling Multimodal Large Language Models [70.19607283302712]
We propose a novel framework to transfer knowledge from l-MLLM to s-MLLM.
Specifically, we introduce Multimodal Distillation (MDist) to minimize the divergence between the visual-textual output distributions of l-MLLM and s-MLLM.
We also propose a three-stage training scheme to fully exploit the potential of s-MLLM.
arXiv Detail & Related papers (2024-10-21T17:41:28Z) - SEA: Supervised Embedding Alignment for Token-Level Visual-Textual Integration in MLLMs [40.74693126923826]
Multimodal Large Language Models (MLLMs) have recently demonstrated remarkable perceptual and reasoning abilities.
Training adapters with image-level supervision often results in significant misalignment.
We introduce Supervised Embedding Alignment (SEA), a token-level alignment method that leverages vision-language pre-trained models.
arXiv Detail & Related papers (2024-08-21T17:58:02Z) - A Comprehensive Review of Multimodal Large Language Models: Performance and Challenges Across Different Tasks [74.52259252807191]
Multimodal Large Language Models (MLLMs) address the complexities of real-world applications far beyond the capabilities of single-modality systems.
This paper systematically sorts out the applications of MLLM in multimodal tasks such as natural language, vision, and audio.
arXiv Detail & Related papers (2024-08-02T15:14:53Z) - A Framework to Model ML Engineering Processes [1.9744907811058787]
Development of Machine Learning (ML) based systems is complex and requires multidisciplinary teams with diverse skill sets.
Current process modeling languages are not suitable for describing the development of such systems.
We introduce a framework for modeling ML-based software development processes, built around a domain-specific language.
arXiv Detail & Related papers (2024-04-29T09:17:36Z) - Mixture-of-Instructions: Aligning Large Language Models via Mixture Prompting [7.103987978402038]
We introduce a novel technique termed Mixture-of-Instructions (MoI)<n>MoI employs a strategy of instruction packing combined with diverse system prompts to boost the alignment efficiency of language models.<n>Our methodology was applied to the open-source Qwen-7B-chat model, culminating in the development of Qwen-SFT-MoI.
arXiv Detail & Related papers (2024-04-29T03:58:12Z) - Simultaneous Machine Translation with Large Language Models [51.470478122113356]
We investigate the possibility of applying Large Language Models to SimulMT tasks.
We conducted experiments using the textttLlama2-7b-chat model on nine different languages from the MUST-C dataset.
The results show that LLM outperforms dedicated MT models in terms of BLEU and LAAL metrics.
arXiv Detail & Related papers (2023-09-13T04:06:47Z) - Generative Multimodal Entity Linking [24.322540112710918]
Multimodal Entity Linking (MEL) is the task of mapping mentions with multimodal contexts to referent entities from a knowledge base.
Existing MEL methods mainly focus on designing complex multimodal interaction mechanisms and require fine-tuning all model parameters.
We propose GEMEL, a Generative Multimodal Entity Linking framework based on Large Language Models (LLMs)
Our framework is compatible with any off-the-shelf language model, paving the way towards an efficient and general solution.
arXiv Detail & Related papers (2023-06-22T07:57:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.