Test-Time-Scaling for Zero-Shot Diagnosis with Visual-Language Reasoning
- URL: http://arxiv.org/abs/2506.11166v1
- Date: Wed, 11 Jun 2025 22:23:38 GMT
- Title: Test-Time-Scaling for Zero-Shot Diagnosis with Visual-Language Reasoning
- Authors: Ji Young Byun, Young-Jin Park, Navid Azizan, Rama Chellappa,
- Abstract summary: We introduce a framework for reliable medical image diagnosis using vision-language models.<n>A test-time scaling strategy consolidates multiple candidate outputs into a reliable final diagnosis.<n>We evaluate our approach across various medical imaging modalities.
- Score: 37.37330596550283
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As a cornerstone of patient care, clinical decision-making significantly influences patient outcomes and can be enhanced by large language models (LLMs). Although LLMs have demonstrated remarkable performance, their application to visual question answering in medical imaging, particularly for reasoning-based diagnosis, remains largely unexplored. Furthermore, supervised fine-tuning for reasoning tasks is largely impractical due to limited data availability and high annotation costs. In this work, we introduce a zero-shot framework for reliable medical image diagnosis that enhances the reasoning capabilities of LLMs in clinical settings through test-time scaling. Given a medical image and a textual prompt, a vision-language model processes a medical image along with a corresponding textual prompt to generate multiple descriptions or interpretations of visual features. These interpretations are then fed to an LLM, where a test-time scaling strategy consolidates multiple candidate outputs into a reliable final diagnosis. We evaluate our approach across various medical imaging modalities -- including radiology, ophthalmology, and histopathology -- and demonstrate that the proposed test-time scaling strategy enhances diagnostic accuracy for both our and baseline methods. Additionally, we provide an empirical analysis showing that the proposed approach, which allows unbiased prompting in the first stage, improves the reliability of LLM-generated diagnoses and enhances classification accuracy.
Related papers
- Medical Reasoning in the Era of LLMs: A Systematic Review of Enhancement Techniques and Applications [59.721265428780946]
Large Language Models (LLMs) in medicine have enabled impressive capabilities, yet a critical gap remains in their ability to perform systematic, transparent, and verifiable reasoning.<n>This paper provides the first systematic review of this emerging field.<n>We propose a taxonomy of reasoning enhancement techniques, categorized into training-time strategies and test-time mechanisms.
arXiv Detail & Related papers (2025-08-01T14:41:31Z) - KERAP: A Knowledge-Enhanced Reasoning Approach for Accurate Zero-shot Diagnosis Prediction Using Multi-agent LLMs [39.47350988195002]
Large language models (LLMs) have shown promise in leveraging language abilities and biomedical knowledge for diagnosis prediction.<n>We propose KERAP, a knowledge graph (KG)-enhanced reasoning approach that improves LLM-based diagnosis prediction through a multi-agent architecture.<n>Our framework consists of a linkage agent for mapping, a retrieval agent for structured knowledge extraction, and a prediction agent that iteratively refines diagnosis predictions.
arXiv Detail & Related papers (2025-07-03T16:35:11Z) - LLM-Driven Medical Document Analysis: Enhancing Trustworthy Pathology and Differential Diagnosis [13.435898630240416]
We propose a trustworthy medical document analysis platform that fine-tunes a LLaMA-v3 using low-rank adaptation.<n>Our approach utilizes DDXPlus, the largest benchmark dataset for differential diagnosis.<n>The developed web-based platform allows users to submit their own unstructured medical documents and receive accurate, explainable diagnostic results.
arXiv Detail & Related papers (2025-06-24T15:12:42Z) - Structured Outputs Enable General-Purpose LLMs to be Medical Experts [50.02627258858336]
Large language models (LLMs) often struggle with open-ended medical questions.<n>We propose a novel approach utilizing structured medical reasoning.<n>Our approach achieves the highest Factuality Score of 85.8, surpassing fine-tuned models.
arXiv Detail & Related papers (2025-03-05T05:24:55Z) - Efficient and Comprehensive Feature Extraction in Large Vision-Language Model for Pathology Analysis [37.11302829771659]
Large vision-language models (LVLMs) are limited by input resolution constraints, hindering their efficiency and accuracy in pathology image analysis.<n>We propose two innovative strategies: the mixed task-guided feature enhancement, and the prompt-guided detail feature completion.<n>We trained the pathology-specialized LVLM, OmniPath, which significantly outperforms existing methods in diagnostic accuracy and efficiency.
arXiv Detail & Related papers (2024-12-12T18:07:23Z) - Insight: A Multi-Modal Diagnostic Pipeline using LLMs for Ocular Surface Disease Diagnosis [17.970320199904084]
We introduce an innovative multi-modal diagnostic pipeline (MDPipe) by employing large language models (LLMs) for ocular surface disease diagnosis.
To tackle these challenges, we introduce an innovative multi-modal diagnostic pipeline (MDPipe) by employing large language models (LLMs) for ocular surface disease diagnosis.
arXiv Detail & Related papers (2024-10-01T00:23:05Z) - SkinGEN: an Explainable Dermatology Diagnosis-to-Generation Framework with Interactive Vision-Language Models [54.32264601568605]
SkinGEN is a diagnosis-to-generation framework that generates reference demonstrations from diagnosis results provided by VLM.<n>We conduct a user study with 32 participants evaluating both the system performance and explainability.<n>Results demonstrate that SkinGEN significantly improves users' comprehension of VLM predictions and fosters increased trust in the diagnostic process.
arXiv Detail & Related papers (2024-04-23T05:36:33Z) - Uncertainty-aware Medical Diagnostic Phrase Identification and Grounding [72.18719355481052]
We introduce a novel task called Medical Report Grounding (MRG)<n>MRG aims to directly identify diagnostic phrases and their corresponding grounding boxes from medical reports in an end-to-end manner.<n>We propose uMedGround, a robust and reliable framework that leverages a multimodal large language model to predict diagnostic phrases.
arXiv Detail & Related papers (2024-04-10T07:41:35Z) - Deciphering Diagnoses: How Large Language Models Explanations Influence
Clinical Decision Making [0.0]
Large Language Models (LLMs) are emerging as a promising tool to generate plain-text explanations for medical decisions.
This study explores the effectiveness and reliability of LLMs in generating explanations for diagnoses based on patient complaints.
arXiv Detail & Related papers (2023-10-03T00:08:23Z) - Towards the Identifiability and Explainability for Personalized Learner
Modeling: An Inductive Paradigm [36.60917255464867]
We propose an identifiable cognitive diagnosis framework (ID-CDF) based on a novel response-proficiency-response paradigm inspired by encoder-decoder models.
We show that ID-CDF can effectively address the problems without loss of diagnosis preciseness.
arXiv Detail & Related papers (2023-09-01T07:18:02Z) - Self-Verification Improves Few-Shot Clinical Information Extraction [73.6905567014859]
Large language models (LLMs) have shown the potential to accelerate clinical curation via few-shot in-context learning.
They still struggle with issues regarding accuracy and interpretability, especially in mission-critical domains such as health.
Here, we explore a general mitigation framework using self-verification, which leverages the LLM to provide provenance for its own extraction and check its own outputs.
arXiv Detail & Related papers (2023-05-30T22:05:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.