KERAP: A Knowledge-Enhanced Reasoning Approach for Accurate Zero-shot Diagnosis Prediction Using Multi-agent LLMs
- URL: http://arxiv.org/abs/2507.02773v2
- Date: Sun, 06 Jul 2025 14:02:34 GMT
- Title: KERAP: A Knowledge-Enhanced Reasoning Approach for Accurate Zero-shot Diagnosis Prediction Using Multi-agent LLMs
- Authors: Yuzhang Xie, Hejie Cui, Ziyang Zhang, Jiaying Lu, Kai Shu, Fadi Nahab, Xiao Hu, Carl Yang,
- Abstract summary: Large language models (LLMs) have shown promise in leveraging language abilities and biomedical knowledge for diagnosis prediction.<n>We propose KERAP, a knowledge graph (KG)-enhanced reasoning approach that improves LLM-based diagnosis prediction through a multi-agent architecture.<n>Our framework consists of a linkage agent for mapping, a retrieval agent for structured knowledge extraction, and a prediction agent that iteratively refines diagnosis predictions.
- Score: 39.47350988195002
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Medical diagnosis prediction plays a critical role in disease detection and personalized healthcare. While machine learning (ML) models have been widely adopted for this task, their reliance on supervised training limits their ability to generalize to unseen cases, particularly given the high cost of acquiring large, labeled datasets. Large language models (LLMs) have shown promise in leveraging language abilities and biomedical knowledge for diagnosis prediction. However, they often suffer from hallucinations, lack structured medical reasoning, and produce useless outputs. To address these challenges, we propose KERAP, a knowledge graph (KG)-enhanced reasoning approach that improves LLM-based diagnosis prediction through a multi-agent architecture. Our framework consists of a linkage agent for attribute mapping, a retrieval agent for structured knowledge extraction, and a prediction agent that iteratively refines diagnosis predictions. Experimental results demonstrate that KERAP enhances diagnostic reliability efficiently, offering a scalable and interpretable solution for zero-shot medical diagnosis prediction.
Related papers
- Medical Reasoning in the Era of LLMs: A Systematic Review of Enhancement Techniques and Applications [59.721265428780946]
Large Language Models (LLMs) in medicine have enabled impressive capabilities, yet a critical gap remains in their ability to perform systematic, transparent, and verifiable reasoning.<n>This paper provides the first systematic review of this emerging field.<n>We propose a taxonomy of reasoning enhancement techniques, categorized into training-time strategies and test-time mechanisms.
arXiv Detail & Related papers (2025-08-01T14:41:31Z) - LLM-Driven Medical Document Analysis: Enhancing Trustworthy Pathology and Differential Diagnosis [13.435898630240416]
We propose a trustworthy medical document analysis platform that fine-tunes a LLaMA-v3 using low-rank adaptation.<n>Our approach utilizes DDXPlus, the largest benchmark dataset for differential diagnosis.<n>The developed web-based platform allows users to submit their own unstructured medical documents and receive accurate, explainable diagnostic results.
arXiv Detail & Related papers (2025-06-24T15:12:42Z) - Test-Time-Scaling for Zero-Shot Diagnosis with Visual-Language Reasoning [37.37330596550283]
We introduce a framework for reliable medical image diagnosis using vision-language models.<n>A test-time scaling strategy consolidates multiple candidate outputs into a reliable final diagnosis.<n>We evaluate our approach across various medical imaging modalities.
arXiv Detail & Related papers (2025-06-11T22:23:38Z) - IP-CRR: Information Pursuit for Interpretable Classification of Chest Radiology Reports [31.359504909372884]
We propose an interpretable-by-design framework for classifying radiology reports.<n>The key idea is to extract a set of most informative queries from a large set of reports and use these queries and their corresponding answers to predict a diagnosis.<n>Experiments on the MIMIC-CXR dataset demonstrate the effectiveness of the proposed method.
arXiv Detail & Related papers (2025-04-30T21:20:05Z) - Uncertainty-aware abstention in medical diagnosis based on medical texts [87.88110503208016]
This study addresses the critical issue of reliability for AI-assisted medical diagnosis.<n>We focus on the selection prediction approach that allows the diagnosis system to abstain from providing the decision if it is not confident in the diagnosis.<n>We introduce HUQ-2, a new state-of-the-art method for enhancing reliability in selective prediction tasks.
arXiv Detail & Related papers (2025-02-25T10:15:21Z) - Memorize and Rank: Elevating Large Language Models for Clinical Diagnosis Prediction [10.403187385041702]
We introduce MERA, a clinical diagnosis prediction model that bridges pertaining natural language knowledge with medical practice.<n>We apply hierarchical contrastive learning on a disease candidate ranking list to alleviate the large decision space issue.
arXiv Detail & Related papers (2025-01-28T22:38:45Z) - Reasoning-Enhanced Healthcare Predictions with Knowledge Graph Community Retrieval [61.70489848327436]
KARE is a novel framework that integrates knowledge graph (KG) community-level retrieval with large language models (LLMs) reasoning.<n>Extensive experiments demonstrate that KARE outperforms leading models by up to 10.8-15.0% on MIMIC-III and 12.6-12.7% on MIMIC-IV for mortality and readmission predictions.
arXiv Detail & Related papers (2024-10-06T18:46:28Z) - Uncertainty-aware Medical Diagnostic Phrase Identification and Grounding [72.18719355481052]
We introduce a novel task called Medical Report Grounding (MRG)<n>MRG aims to directly identify diagnostic phrases and their corresponding grounding boxes from medical reports in an end-to-end manner.<n>We propose uMedGround, a robust and reliable framework that leverages a multimodal large language model to predict diagnostic phrases.
arXiv Detail & Related papers (2024-04-10T07:41:35Z) - Towards the Identifiability and Explainability for Personalized Learner
Modeling: An Inductive Paradigm [36.60917255464867]
We propose an identifiable cognitive diagnosis framework (ID-CDF) based on a novel response-proficiency-response paradigm inspired by encoder-decoder models.
We show that ID-CDF can effectively address the problems without loss of diagnosis preciseness.
arXiv Detail & Related papers (2023-09-01T07:18:02Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
Outcome prediction from clinical text can prevent doctors from overlooking possible risks.
Diagnoses at discharge, procedures performed, in-hospital mortality and length-of-stay prediction are four common outcome prediction targets.
We propose clinical outcome pre-training to integrate knowledge about patient outcomes from multiple public sources.
arXiv Detail & Related papers (2021-02-08T10:26:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.