Brain2Vec: A Deep Learning Framework for EEG-Based Stress Detection Using CNN-LSTM-Attention
- URL: http://arxiv.org/abs/2506.11179v1
- Date: Thu, 12 Jun 2025 12:57:19 GMT
- Title: Brain2Vec: A Deep Learning Framework for EEG-Based Stress Detection Using CNN-LSTM-Attention
- Authors: Md Mynoddin, Troyee Dev, Rishita Chakma,
- Abstract summary: Brain2Vec is a new deep learning tool that classifies stress states from raw EEG recordings.<n>These findings demonstrate Brain2Vec's potential for integration into wearable stress monitoring platforms and personalized healthcare systems.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Mental stress has become a pervasive factor affecting cognitive health and overall well-being, necessitating the development of robust, non-invasive diagnostic tools. Electroencephalogram (EEG) signals provide a direct window into neural activity, yet their non-stationary and high-dimensional nature poses significant modeling challenges. Here we introduce Brain2Vec, a new deep learning tool that classifies stress states from raw EEG recordings using a hybrid architecture of convolutional, recurrent, and attention mechanisms. The model begins with a series of convolutional layers to capture localized spatial dependencies, followed by an LSTM layer to model sequential temporal patterns, and concludes with an attention mechanism to emphasize informative temporal regions. We evaluate Brain2Vec on the DEAP dataset, applying bandpass filtering, z-score normalization, and epoch segmentation as part of a comprehensive preprocessing pipeline. Compared to traditional CNN-LSTM baselines, our proposed model achieves an AUC score of 0.68 and a validation accuracy of 81.25%. These findings demonstrate Brain2Vec's potential for integration into wearable stress monitoring platforms and personalized healthcare systems.
Related papers
- CSBrain: A Cross-scale Spatiotemporal Brain Foundation Model for EEG Decoding [57.90382885533593]
We propose a Cross-scale Spatiotemporal Brain foundation model for generalized decoding EEG signals.<n>We show that CSBrain consistently outperforms task-specific and foundation model baselines.<n>These results establish cross-scale modeling as a key inductive bias and position CSBrain as a robust backbone for future brain-AI research.
arXiv Detail & Related papers (2025-06-29T03:29:34Z) - Decoding the Stressed Brain with Geometric Machine Learning [3.8982812950782253]
Stress contributes to both mental and physical disorders.<n>In this study, we introduce a novel framework that employs geometric machine learning to detect stress from raw recordings.
arXiv Detail & Related papers (2025-05-31T14:47:48Z) - BrainOmni: A Brain Foundation Model for Unified EEG and MEG Signals [50.76802709706976]
This paper proposes Brain Omni, the first brain foundation model that generalises across heterogeneous EEG and MEG recordings.<n>To unify diverse data sources, we introduce BrainTokenizer, the first tokenizer that quantises neural brain activity into discrete representations.<n>A total of 1,997 hours of EEG and 656 hours of MEG data are curated and standardised from publicly available sources for pretraining.
arXiv Detail & Related papers (2025-05-18T14:07:14Z) - FoME: A Foundation Model for EEG using Adaptive Temporal-Lateral Attention Scaling [19.85701025524892]
FoME (Foundation Model for EEG) is a novel approach using adaptive temporal-lateral attention scaling.
FoME is pre-trained on a diverse 1.7TB dataset of scalp and intracranial EEG recordings, comprising 745M parameters trained for 1,096k steps.
arXiv Detail & Related papers (2024-09-19T04:22:40Z) - Enhancing Cognitive Workload Classification Using Integrated LSTM Layers and CNNs for fNIRS Data Analysis [13.74551296919155]
This paper explores the im-pact of Long Short-Term Memory layers on the effectiveness of Convolutional Neural Networks (CNNs) within deep learning models.
By integrating LSTM layers, the model can capture temporal dependencies in the fNIRS data, al-lowing for a more comprehensive understanding of cognitive states.
arXiv Detail & Related papers (2024-07-22T11:28:34Z) - L-SFAN: Lightweight Spatially-focused Attention Network for Pain Behavior Detection [44.016805074560295]
Chronic Low Back Pain (CLBP) afflicts millions globally, significantly impacting individuals' well-being and imposing economic burdens on healthcare systems.
While artificial intelligence (AI) and deep learning offer promising avenues for analyzing pain-related behaviors to improve rehabilitation strategies, current models, including convolutional neural networks (CNNs), have limitations.
We introduce hbox EmoL-SFAN, a lightweight CNN architecture incorporating 2D filters designed to capture the spatial-temporal interplay of data from motion capture and surface electromyography sensors.
arXiv Detail & Related papers (2024-06-07T12:01:37Z) - REST: Efficient and Accelerated EEG Seizure Analysis through Residual State Updates [54.96885726053036]
This paper introduces a novel graph-based residual state update mechanism (REST) for real-time EEG signal analysis.
By leveraging a combination of graph neural networks and recurrent structures, REST efficiently captures both non-Euclidean geometry and temporal dependencies within EEG data.
Our model demonstrates high accuracy in both seizure detection and classification tasks.
arXiv Detail & Related papers (2024-06-03T16:30:19Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
In this study, we first construct the brain-effective network via the dynamic causal model.
We then introduce an interpretable graph learning framework termed Spatio-Temporal Embedding ODE (STE-ODE)
This framework incorporates specifically designed directed node embedding layers, aiming at capturing the dynamic interplay between structural and effective networks.
arXiv Detail & Related papers (2024-05-21T20:37:07Z) - Learning Successor Features with Distributed Hebbian Temporal Memory [44.99833362998488]
This paper presents a novel approach to address the challenge of online sequence learning for decision making under uncertainty.<n>The proposed algorithm, Distributed Hebbian Temporal Memory (DHTM), is based on the factor graph formalism and a multi-component neuron model.<n> Experimental results show that DHTM outperforms LSTM, RWKV and a biologically inspired HMM-like algorithm, CSCG, on non-stationary data sets.
arXiv Detail & Related papers (2023-10-20T10:03:14Z) - HARDC : A novel ECG-based heartbeat classification method to detect
arrhythmia using hierarchical attention based dual structured RNN with
dilated CNN [3.8791511769387625]
We have developed a novel hybrid hierarchical attention-based bidirectional recurrent neural network with dilated CNN (HARDC) method for arrhythmia classification.
The proposed HARDC fully exploits the dilated CNN and bidirectional recurrent neural network unit (BiGRU-BiLSTM) architecture to generate fusion features.
Our results indicate that an automated and highly computed method to classify multiple types of arrhythmia signals holds considerable promise.
arXiv Detail & Related papers (2023-03-06T13:26:29Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
The framework includes deep-learning models at the swallow-level stage and feature-based machine learning models at the study-level stage.
This is the first artificial-intelligence-style model to automatically predict CC diagnosis of HRM study from raw multi-swallow data.
arXiv Detail & Related papers (2021-06-25T20:09:23Z) - Generative Autoencoder Kernels on Deep Learning for Brain Activity
Analysis [3.04585143845864]
Hessenberg decomposition-based ELM autoencoder (HessELM-AE) is a novel kernel to generate different presentations of the input data.
The aim of the study is analyzing the performance of the novel Deep AE kernel for clinical availability on electroencephalogram (EEG) with stroke patients.
arXiv Detail & Related papers (2021-01-21T08:19:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.