CSBrain: A Cross-scale Spatiotemporal Brain Foundation Model for EEG Decoding
- URL: http://arxiv.org/abs/2506.23075v1
- Date: Sun, 29 Jun 2025 03:29:34 GMT
- Title: CSBrain: A Cross-scale Spatiotemporal Brain Foundation Model for EEG Decoding
- Authors: Yuchen Zhou, Jiamin Wu, Zichen Ren, Zhouheng Yao, Weiheng Lu, Kunyu Peng, Qihao Zheng, Chunfeng Song, Wanli Ouyang, Chao Gou,
- Abstract summary: We propose a Cross-scale Spatiotemporal Brain foundation model for generalized decoding EEG signals.<n>We show that CSBrain consistently outperforms task-specific and foundation model baselines.<n>These results establish cross-scale modeling as a key inductive bias and position CSBrain as a robust backbone for future brain-AI research.
- Score: 57.90382885533593
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Understanding and decoding brain activity from electroencephalography (EEG) signals is a fundamental challenge in neuroscience and AI, with applications in cognition, emotion recognition, diagnosis, and brain-computer interfaces. While recent EEG foundation models advance generalized decoding via unified architectures and large-scale pretraining, they adopt a scale-agnostic dense modeling paradigm inherited from NLP and vision. This design neglects a core property of neural activity: cross-scale spatiotemporal structure. EEG task patterns span a wide range of temporal and spatial scales, from short bursts to slow rhythms, and from localized cortical responses to distributed interactions. Ignoring this diversity leads to suboptimal representations and weak generalization. We propose CSBrain, a Cross-scale Spatiotemporal Brain foundation model for generalized EEG decoding. CSBrain introduces: (i) Cross-scale Spatiotemporal Tokenization (CST), which aggregates multi-scale features from localized temporal windows and anatomical brain regions into compact scale-aware tokens; and (ii) Structured Sparse Attention (SSA), which captures cross-window and cross-region dependencies, enhancing scale diversity while removing spurious correlations. CST and SSA are alternately stacked to progressively integrate multi-scale dependencies. Experiments on 11 EEG tasks across 16 datasets show that CSBrain consistently outperforms task-specific and foundation model baselines. These results establish cross-scale modeling as a key inductive bias and position CSBrain as a robust backbone for future brain-AI research.
Related papers
- AdaBrain-Bench: Benchmarking Brain Foundation Models for Brain-Computer Interface Applications [52.91583053243446]
Non-invasive Brain-Computer Interfaces (BCI) offer a safe and accessible means of connecting the human brain to external devices.<n>Recently, the adoption of self-supervised pre-training is transforming the landscape of non-invasive BCI research.<n>AdaBrain-Bench is a standardized benchmark to evaluate brain foundation models in widespread non-invasive BCI tasks.
arXiv Detail & Related papers (2025-07-14T03:37:41Z) - Brain2Vec: A Deep Learning Framework for EEG-Based Stress Detection Using CNN-LSTM-Attention [0.0]
Brain2Vec is a new deep learning tool that classifies stress states from raw EEG recordings.<n>These findings demonstrate Brain2Vec's potential for integration into wearable stress monitoring platforms and personalized healthcare systems.
arXiv Detail & Related papers (2025-06-12T12:57:19Z) - CodeBrain: Bridging Decoupled Tokenizer and Multi-Scale Architecture for EEG Foundation Model [33.550819280074826]
EEG foundation models struggle with limited heterogeneous representation capacity and inefficiency in capturing multi-scale brain dependencies.<n>We propose CodeBrain, an efficient EFM structurally aligned with brain organization, trained in two stages.<n>EEGSSM combines a structured global convolution architecture and a sliding window attention mechanism to jointly model sparse long-range and local dependencies.
arXiv Detail & Related papers (2025-06-10T17:20:39Z) - BrainOmni: A Brain Foundation Model for Unified EEG and MEG Signals [50.76802709706976]
This paper proposes Brain Omni, the first brain foundation model that generalises across heterogeneous EEG and MEG recordings.<n>To unify diverse data sources, we introduce BrainTokenizer, the first tokenizer that quantises neural brain activity into discrete representations.<n>A total of 1,997 hours of EEG and 656 hours of MEG data are curated and standardised from publicly available sources for pretraining.
arXiv Detail & Related papers (2025-05-18T14:07:14Z) - BrainMAP: Learning Multiple Activation Pathways in Brain Networks [77.15180533984947]
We introduce a novel framework BrainMAP to learn Multiple Activation Pathways in Brain networks.<n>Our framework enables explanatory analyses of crucial brain regions involved in tasks.
arXiv Detail & Related papers (2024-12-23T09:13:35Z) - Knowledge-Guided Prompt Learning for Lifespan Brain MR Image Segmentation [53.70131202548981]
We present a two-step segmentation framework employing Knowledge-Guided Prompt Learning (KGPL) for brain MRI.
Specifically, we first pre-train segmentation models on large-scale datasets with sub-optimal labels.
The introduction of knowledge-wise prompts captures semantic relationships between anatomical variability and biological processes.
arXiv Detail & Related papers (2024-07-31T04:32:43Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
In this study, we first construct the brain-effective network via the dynamic causal model.
We then introduce an interpretable graph learning framework termed Spatio-Temporal Embedding ODE (STE-ODE)
This framework incorporates specifically designed directed node embedding layers, aiming at capturing the dynamic interplay between structural and effective networks.
arXiv Detail & Related papers (2024-05-21T20:37:07Z) - Du-IN: Discrete units-guided mask modeling for decoding speech from Intracranial Neural signals [5.283718601431859]
Invasive brain-computer interfaces with Electrocorticography (ECoG) have shown promise for high-performance speech decoding in medical applications.
We developed the Du-IN model, which extracts contextual embeddings based on region-level tokens through discrete codex-guided mask modeling.
Our model achieves state-of-the-art performance on the 61-word classification task, surpassing all baselines.
arXiv Detail & Related papers (2024-05-19T06:00:36Z) - MBrain: A Multi-channel Self-Supervised Learning Framework for Brain
Signals [7.682832730967219]
We study the self-supervised learning framework for brain signals that can be applied to pre-train either SEEG or EEG data.
Inspired by this, we propose MBrain to learn implicit spatial and temporal correlations between different channels.
Our model outperforms several state-of-the-art time series SSL and unsupervised models, and has the ability to be deployed to clinical practice.
arXiv Detail & Related papers (2023-06-15T09:14:26Z) - Language Knowledge-Assisted Representation Learning for Skeleton-Based
Action Recognition [71.35205097460124]
How humans understand and recognize the actions of others is a complex neuroscientific problem.
LA-GCN proposes a graph convolution network using large-scale language models (LLM) knowledge assistance.
arXiv Detail & Related papers (2023-05-21T08:29:16Z) - Convolutional Neural Networks for cytoarchitectonic brain mapping at
large scale [0.33727511459109777]
We present a new workflow for mapping cytoarchitectonic areas in large series of cell-body stained histological sections of human postmortem brains.
It is based on a Deep Convolutional Neural Network (CNN), which is trained on a pair of section images with annotations, with a large number of un-annotated sections in between.
The new workflow does not require preceding 3D-reconstruction of sections, and is robust against histological artefacts.
arXiv Detail & Related papers (2020-11-25T16:25:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.