Decoding the Stressed Brain with Geometric Machine Learning
- URL: http://arxiv.org/abs/2506.00587v1
- Date: Sat, 31 May 2025 14:47:48 GMT
- Title: Decoding the Stressed Brain with Geometric Machine Learning
- Authors: Sonia Koszut, Sam Nallaperuma-Herzberg, Pietro Lio,
- Abstract summary: Stress contributes to both mental and physical disorders.<n>In this study, we introduce a novel framework that employs geometric machine learning to detect stress from raw recordings.
- Score: 3.8982812950782253
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Stress significantly contributes to both mental and physical disorders, yet traditional self-reported questionnaires are inherently subjective. In this study, we introduce a novel framework that employs geometric machine learning to detect stress from raw EEG recordings. Our approach constructs graphs by integrating structural connectivity (derived from electrode spatial arrangement) with functional connectivity from pairwise signal correlations. A spatio-temporal graph convolutional network (ST-GCN) processes these graphs to capture spatial and temporal dynamics. Experiments on the SAM-40 dataset show that the ST-GCN outperforms standard machine learning models on all key classification metrics and enhances interpretability, explored through ablation analyses of key channels and brain regions. These results pave the way for more objective and accurate stress detection methods.
Related papers
- Brain2Vec: A Deep Learning Framework for EEG-Based Stress Detection Using CNN-LSTM-Attention [0.0]
Brain2Vec is a new deep learning tool that classifies stress states from raw EEG recordings.<n>These findings demonstrate Brain2Vec's potential for integration into wearable stress monitoring platforms and personalized healthcare systems.
arXiv Detail & Related papers (2025-06-12T12:57:19Z) - Scalable Geometric Learning with Correlation-Based Functional Brain Networks [0.0]
The correlation matrix is a central representation of functional brain networks in neuroimaging.<n>Traditional analyses often treat pairwise interactions independently in a Euclidean setting.<n>This paper presents a novel geometric framework that embeds correlation matrices into a Euclidean space.
arXiv Detail & Related papers (2025-03-31T01:35:50Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
In this study, we first construct the brain-effective network via the dynamic causal model.
We then introduce an interpretable graph learning framework termed Spatio-Temporal Embedding ODE (STE-ODE)
This framework incorporates specifically designed directed node embedding layers, aiming at capturing the dynamic interplay between structural and effective networks.
arXiv Detail & Related papers (2024-05-21T20:37:07Z) - Detecting Anomalies in Dynamic Graphs via Memory enhanced Normality [39.476378833827184]
Anomaly detection in dynamic graphs presents a significant challenge due to the temporal evolution of graph structures and attributes.
We introduce a novel spatial- temporal memories-enhanced graph autoencoder (STRIPE)
STRIPE significantly outperforms existing methods with 5.8% improvement in AUC scores and 4.62X faster in training time.
arXiv Detail & Related papers (2024-03-14T02:26:10Z) - GDBN: a Graph Neural Network Approach to Dynamic Bayesian Network [7.876789380671075]
We propose a graph neural network approach with score-based method aiming at learning a sparse DAG.
We demonstrate methods with graph neural network significantly outperformed other state-of-the-art methods with dynamic bayesian networking inference.
arXiv Detail & Related papers (2023-01-28T02:49:13Z) - Spatial Temporal Graph Convolution with Graph Structure Self-learning
for Early MCI Detection [9.11430195887347]
We propose a spatial temporal graph convolutional network with a novel graph structure self-learning mechanism for EMCI detection.
Results on the Alzheimer's Disease Neuroimaging Initiative database show that our method outperforms state-of-the-art approaches.
arXiv Detail & Related papers (2022-11-11T12:29:00Z) - Data-heterogeneity-aware Mixing for Decentralized Learning [63.83913592085953]
We characterize the dependence of convergence on the relationship between the mixing weights of the graph and the data heterogeneity across nodes.
We propose a metric that quantifies the ability of a graph to mix the current gradients.
Motivated by our analysis, we propose an approach that periodically and efficiently optimize the metric.
arXiv Detail & Related papers (2022-04-13T15:54:35Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Dynamic Adaptive Spatio-temporal Graph Convolution for fMRI Modelling [0.0]
We propose a dynamic adaptivetemporal graph convolution (DASTGCN) model to overcome the shortcomings of pre-defined static correlation-based graph structures.
The proposed approach allows end-to-end inference of dynamic connections between brain regions via layer-wise graph structure learning module.
We evaluate our pipeline on the UKBiobank for age and gender classification tasks from resting-state functional scans.
arXiv Detail & Related papers (2021-09-26T07:19:47Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
We introduce an active intervention-targeting mechanism which enables a quick identification of the underlying causal structure of the data-generating process.
Our method significantly reduces the required number of interactions compared with random intervention targeting.
We demonstrate superior performance on multiple benchmarks from simulated to real-world data.
arXiv Detail & Related papers (2021-09-06T13:10:37Z) - PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive
Learning [109.84770951839289]
We present PredRNN, a new recurrent network for learning visual dynamics from historical context.
We show that our approach obtains highly competitive results on three standard datasets.
arXiv Detail & Related papers (2021-03-17T08:28:30Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
This paper introduces a tensor-graph convolutional network (TGCN) for scalable semi-supervised learning (SSL) from data associated with a collection of graphs, that are represented by a tensor.
The proposed architecture achieves markedly improved performance relative to standard GCNs, copes with state-of-the-art adversarial attacks, and leads to remarkable SSL performance over protein-to-protein interaction networks.
arXiv Detail & Related papers (2020-03-15T02:33:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.