Polymorphism Crystal Structure Prediction with Adaptive Space Group Diversity Control
- URL: http://arxiv.org/abs/2506.11332v1
- Date: Thu, 12 Jun 2025 22:08:35 GMT
- Title: Polymorphism Crystal Structure Prediction with Adaptive Space Group Diversity Control
- Authors: Sadman Sadeed Omee, Lai Wei, Sourin Dey, Jianjun Hu,
- Abstract summary: Crystalline materials can form different structural arrangements (i.e. polymorphs) with the same chemical composition.<n>We propose a multi-objective genetic algorithm for polymorphism CSP that incorporates an adaptive space group diversity control technique.<n>ParetoCSP2 achieves excellent performance in polymorphism prediction, including a nearly perfect space group.
- Score: 2.981139602986498
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Crystalline materials can form different structural arrangements (i.e. polymorphs) with the same chemical composition, exhibiting distinct physical properties depending on how they were synthesized or the conditions under which they operate. For example, carbon can exist as graphite (soft, conductive) or diamond (hard, insulating). Computational methods that can predict these polymorphs are vital in materials science, which help understand stability relationships, guide synthesis efforts, and discover new materials with desired properties without extensive trial-and-error experimentation. However, effective crystal structure prediction (CSP) algorithms for inorganic polymorph structures remain limited. We propose ParetoCSP2, a multi-objective genetic algorithm for polymorphism CSP that incorporates an adaptive space group diversity control technique, preventing over-representation of any single space group in the population guided by a neural network interatomic potential. Using an improved population initialization method and performing iterative structure relaxation, ParetoCSP2 not only alleviates premature convergence but also achieves improved convergence speed. Our results show that ParetoCSP2 achieves excellent performance in polymorphism prediction, including a nearly perfect space group and structural similarity accuracy for formulas with two polymorphs but with the same number of unit cell atoms. Evaluated on a benchmark dataset, it outperforms baseline algorithms by factors of 2.46-8.62 for these accuracies and improves by 44.8\%-87.04\% across key performance metrics for regular CSP. Our source code is freely available at https://github.com/usccolumbia/ParetoCSP2.
Related papers
- Machine Learning Workflow for Analysis of High-Dimensional Order Parameter Space: A Case Study of Polymer Crystallization from Molecular Dynamics Simulations [0.0]
identification of crystallization pathways in polymers is currently carried out using molecular simulation-based data.<n>In this study, an integrated machine learning workflow is presented to accurately quantify crystallinity.
arXiv Detail & Related papers (2025-07-23T23:02:10Z) - polyGen: A Learning Framework for Atomic-level Polymer Structure Generation [4.6516580885528835]
We introduce polyGen, the first generative model designed specifically for polymer structures from minimal inputs such as repeat unit chemistry alone.<n> polyGen overcomes the limitations of traditional crystal structure prediction methods for polymers, successfully generating realistic and diverse linear and branched conformations.<n>As the first atomic-level proof-of-concept capturing intrinsic polymer flexibility, it marks a new capability in material structure generation.
arXiv Detail & Related papers (2025-04-24T15:26:00Z) - Unleashing the power of novel conditional generative approaches for new materials discovery [3.972733741872872]
We propose two generative approaches to the problem of crystal structure design.
One is conditional structure modification, using the energy difference between the most energetically favorable structure and all its less stable polymorphs.
The other is conditional structure generation, using the energy difference between the most energetically favorable structure and all its less stable polymorphs.
arXiv Detail & Related papers (2024-11-05T14:58:31Z) - Illuminating the property space in crystal structure prediction using
Quality-Diversity algorithms [5.380545611878407]
We propose the application of textit Quality-Diversity algorithms to the field of crystal structure prediction.
We employ machine-learning surrogate models to compute the interatomic potential and material properties that are used to guide optimisation.
We show the value of using neural networks to model crystal properties and enable the identification of novel composition--structure combinations.
arXiv Detail & Related papers (2024-03-06T07:38:31Z) - Compositional Representation of Polymorphic Crystalline Materials [56.80318252233511]
We introduce PCRL, a novel approach that employs probabilistic modeling of composition to capture the diverse polymorphs from available structural information.<n>Extensive evaluations on sixteen datasets demonstrate the effectiveness of PCRL in learning compositional representation.
arXiv Detail & Related papers (2023-11-17T20:34:28Z) - Latent Conservative Objective Models for Data-Driven Crystal Structure
Prediction [62.36797874900395]
In computational chemistry, crystal structure prediction is an optimization problem.
One approach to tackle this problem involves building simulators based on density functional theory (DFT) followed by running search in simulation.
We show that our approach, dubbed LCOMs (latent conservative objective models), performs comparably to the best current approaches in terms of success rate of structure prediction.
arXiv Detail & Related papers (2023-10-16T04:35:44Z) - Crystal structure prediction using neural network potential and
age-fitness Pareto genetic algorithm [3.660182910533372]
We introduce a novel algorithm for crystal structure prediction (CSP)
It combines a multi-objective genetic algorithm (MOGA) with a neural network inter-atomic potential (IAP) model to find energetically optimal crystal structures.
Compared to GN-OA, it demonstrated significantly better predictive capabilities, outperforming by a factor of $2.562$ across $55$ diverse benchmark structures.
arXiv Detail & Related papers (2023-09-13T04:17:28Z) - Deciphering RNA Secondary Structure Prediction: A Probabilistic K-Rook Matching Perspective [63.3632827588974]
We introduce RFold, a method that learns to predict the most matching K-Rook solution from the given sequence.
RFold achieves competitive performance and about eight times faster inference efficiency than state-of-the-art approaches.
arXiv Detail & Related papers (2022-12-02T16:34:56Z) - Entropic trust region for densest crystallographic symmetry group
packings [0.8399688944263843]
Molecular crystal structure prediction seeks the most stable periodic structure given the chemical composition of a molecule and pressure-temperature conditions.
Modern CSP solvers use global optimization methods to search for structures with minimal free energy within a complex energy landscape induced by intermolecular potentials.
We propose a class of periodic packings restricted to crystallographic symmetry groups (CSG) and design a search method for the densest CSG packings in an information-geometric framework.
arXiv Detail & Related papers (2022-02-24T08:39:07Z) - Molecular Attributes Transfer from Non-Parallel Data [57.010952598634944]
We formulate molecular optimization as a style transfer problem and present a novel generative model that could automatically learn internal differences between two groups of non-parallel data.
Experiments on two molecular optimization tasks, toxicity modification and synthesizability improvement, demonstrate that our model significantly outperforms several state-of-the-art methods.
arXiv Detail & Related papers (2021-11-30T06:10:22Z) - A deep learning driven pseudospectral PCE based FFT homogenization
algorithm for complex microstructures [68.8204255655161]
It is shown that the proposed method is able to predict central moments of interest while being magnitudes faster to evaluate than traditional approaches.
It is shown, that the proposed method is able to predict central moments of interest while being magnitudes faster to evaluate than traditional approaches.
arXiv Detail & Related papers (2021-10-26T07:02:14Z) - MIMOSA: Multi-constraint Molecule Sampling for Molecule Optimization [51.00815310242277]
generative models and reinforcement learning approaches made initial success, but still face difficulties in simultaneously optimizing multiple drug properties.
We propose the MultI-constraint MOlecule SAmpling (MIMOSA) approach, a sampling framework to use input molecule as an initial guess and sample molecules from the target distribution.
arXiv Detail & Related papers (2020-10-05T20:18:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.