The Strategic Imperative for Healthcare Organizations to Build Proprietary Foundation Models
- URL: http://arxiv.org/abs/2506.11412v1
- Date: Sat, 15 Mar 2025 13:01:44 GMT
- Title: The Strategic Imperative for Healthcare Organizations to Build Proprietary Foundation Models
- Authors: Naresh Tiwari,
- Abstract summary: This paper presents a comprehensive analysis of the strategic imperative for healthcare organizations to develop proprietary foundation models.<n>We examine four fundamental considerations driving this imperative: the domain-specific requirements of healthcare data representation, critical data sovereignty and governance considerations unique to healthcare, strategic competitive advantages afforded by proprietary AI infrastructure, and the transformative potential of healthcare-specific foundation models for patient care and organizational operations.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a comprehensive analysis of the strategic imperative for healthcare organizations to develop proprietary foundation models rather than relying exclusively on commercial alternatives. We examine four fundamental considerations driving this imperative: the domain-specific requirements of healthcare data representation, critical data sovereignty and governance considerations unique to healthcare, strategic competitive advantages afforded by proprietary AI infrastructure, and the transformative potential of healthcare-specific foundation models for patient care and organizational operations. Through analysis of empirical evidence, economic frameworks, and organizational case studies, we demonstrate that proprietary multimodal foundation models enable healthcare organizations to achieve superior clinical performance, maintain robust data governance, create sustainable competitive advantages, and accelerate innovation pathways. While acknowledging implementation challenges, we present evidence showing organizations with proprietary AI capabilities demonstrate measurably improved outcomes, faster innovation cycles, and stronger strategic positioning in the evolving healthcare ecosystem. This analysis provides healthcare leaders with a comprehensive framework for evaluating build-versus-buy decisions regarding foundation model implementation, positioning proprietary foundation model development as a cornerstone capability for forward-thinking healthcare organizations.
Related papers
- ConfAgents: A Conformal-Guided Multi-Agent Framework for Cost-Efficient Medical Diagnosis [11.18347744454527]
We introduce HealthFlow, a self-evolving AI agent that overcomes limitations through a novel meta-level evolution mechanism.<n>HealthFlow autonomously refines its own high-level problem-solving policies by distilling procedural successes and failures into a durable, strategic knowledge base.<n>Our experiments demonstrate that HealthFlow's self-evolving approach significantly outperforms state-of-the-art agent frameworks.
arXiv Detail & Related papers (2025-08-06T22:39:38Z) - HealthFlow: A Self-Evolving AI Agent with Meta Planning for Autonomous Healthcare Research [16.963151914975438]
We introduce HealthFlow, a self-evolving AI agent that overcomes limitations through a novel meta-level evolution mechanism.<n>HealthFlow autonomously refines its own high-level problem-solving policies by distilling procedural successes and failures into a durable, strategic knowledge base.<n>Our experiments demonstrate that HealthFlow's self-evolving approach significantly outperforms state-of-the-art agent frameworks.
arXiv Detail & Related papers (2025-08-04T17:08:47Z) - Medical Reasoning in the Era of LLMs: A Systematic Review of Enhancement Techniques and Applications [59.721265428780946]
Large Language Models (LLMs) in medicine have enabled impressive capabilities, yet a critical gap remains in their ability to perform systematic, transparent, and verifiable reasoning.<n>This paper provides the first systematic review of this emerging field.<n>We propose a taxonomy of reasoning enhancement techniques, categorized into training-time strategies and test-time mechanisms.
arXiv Detail & Related papers (2025-08-01T14:41:31Z) - Enterprise Architecture as a Dynamic Capability for Scalable and Sustainable Generative AI adoption: Bridging Innovation and Governance in Large Organisations [55.2480439325792]
Generative Artificial Intelligence is a powerful new technology with the potential to boost innovation and reshape governance in many industries.<n>However, organisations face major challenges in scaling GenAI, including technology complexity, governance gaps and resource misalignments.<n>This study explores how Enterprise Architecture Management can meet the complex requirements of GenAI adoption within large enterprises.
arXiv Detail & Related papers (2025-05-09T07:41:33Z) - Fair Foundation Models for Medical Image Analysis: Challenges and Perspectives [2.5573554033525636]
Foundation Models (FMs), trained on vast datasets through self-supervised learning, enable efficient adaptation across medical imaging tasks.<n>These models demonstrate potential for enhancing fairness, though significant challenges remain in achieving consistent performance across demographic groups.<n>This comprehensive framework advances current knowledge by demonstrating how systematic bias mitigation, combined with policy engagement, can effectively address both technical and institutional barriers to equitable AI in healthcare.
arXiv Detail & Related papers (2025-02-24T04:54:49Z) - On the Trustworthiness of Generative Foundation Models: Guideline, Assessment, and Perspective [334.48358909967845]
Generative Foundation Models (GenFMs) have emerged as transformative tools.<n>Their widespread adoption raises critical concerns regarding trustworthiness across dimensions.<n>This paper presents a comprehensive framework to address these challenges through three key contributions.
arXiv Detail & Related papers (2025-02-20T06:20:36Z) - Spatio-Temporal Foundation Models: Vision, Challenges, and Opportunities [48.45951497996322]
Foundation models (STFMs) have revolutionized artificial intelligence, setting new benchmarks in performance and enabling transformative capabilities across a wide range of vision and language tasks.<n>In this paper, we articulate a vision for the future of STFMs, outlining their essential characteristics and generalization capabilities necessary for broad applicability.<n>We explore potential opportunities and directions to advance research towards the aim of effective and broadly applicable STFMs.
arXiv Detail & Related papers (2025-01-15T08:52:28Z) - SIR-RL: Reinforcement Learning for Optimized Policy Control during Epidemiological Outbreaks in Emerging Market and Developing Economies [0.0]
This study proposes a novel reinforcement learning framework designed to optimize health and economic outcomes during pandemics.
By implementing reinforcement learning, we aim to optimize governmental responses and strike a balance between the competing costs associated with public health and economic stability.
arXiv Detail & Related papers (2024-04-12T12:11:51Z) - Leveraging Generative AI for Clinical Evidence Summarization Needs to Ensure Trustworthiness [47.51360338851017]
Evidence-based medicine promises to improve the quality of healthcare by empowering medical decisions and practices with the best available evidence.
The rapid growth of medical evidence, which can be obtained from various sources, poses a challenge in collecting, appraising, and synthesizing the evidential information.
Recent advancements in generative AI, exemplified by large language models, hold promise in facilitating the arduous task.
arXiv Detail & Related papers (2023-11-19T03:29:45Z) - Representational Ethical Model Calibration [0.7078141380481605]
Epistem equity is the comparative fidelity of intelligence in decision-making.
No general framework for its quantification, let alone assurance, exists.
We introduce a comprehensive framework for Representational Ethical Model.
arXiv Detail & Related papers (2022-07-25T10:33:39Z) - MedPerf: Open Benchmarking Platform for Medical Artificial Intelligence
using Federated Evaluation [110.31526448744096]
We argue that unlocking this potential requires a systematic way to measure the performance of medical AI models on large-scale heterogeneous data.
We are building MedPerf, an open framework for benchmarking machine learning in the medical domain.
arXiv Detail & Related papers (2021-09-29T18:09:41Z) - Strategic alignment between IT flexibility and dynamic capabilities: an
empirical investigation [0.0]
This paper develops a strategic alignment model for IT flexibility and dynamic capabilities.
It empirically validates proposed hypotheses using correlation and regression analyses on a large data sample of 322 international firms.
arXiv Detail & Related papers (2021-05-18T10:37:33Z) - Privacy-preserving medical image analysis [53.4844489668116]
We present PriMIA, a software framework designed for privacy-preserving machine learning (PPML) in medical imaging.
We show significantly better classification performance of a securely aggregated federated learning model compared to human experts on unseen datasets.
We empirically evaluate the framework's security against a gradient-based model inversion attack.
arXiv Detail & Related papers (2020-12-10T13:56:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.