FAD-Net: Frequency-Domain Attention-Guided Diffusion Network for Coronary Artery Segmentation using Invasive Coronary Angiography
- URL: http://arxiv.org/abs/2506.11454v1
- Date: Fri, 13 Jun 2025 04:10:48 GMT
- Title: FAD-Net: Frequency-Domain Attention-Guided Diffusion Network for Coronary Artery Segmentation using Invasive Coronary Angiography
- Authors: Nan Mu, Ruiqi Song, Xiaoning Li, Zhihui Xu, Jingfeng Jiang, Chen Zhao,
- Abstract summary: We propose a novel deep learning model based on frequency-domain analysis to enhance the accuracy of coronary artery segmentation.<n>FAD-Net achieves a mean Dice coefficient of 0.8717 in coronary artery segmentation, outperforming existing state-of-the-art methods.<n>It attains a true positive rate of 0.6140 and a positive predictive value of 0.6398 in stenosis detection, underscoring its clinical applicability.
- Score: 5.0119372803973965
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Background: Coronary artery disease (CAD) remains one of the leading causes of mortality worldwide. Precise segmentation of coronary arteries from invasive coronary angiography (ICA) is critical for effective clinical decision-making. Objective: This study aims to propose a novel deep learning model based on frequency-domain analysis to enhance the accuracy of coronary artery segmentation and stenosis detection in ICA, thereby offering robust support for the stenosis detection and treatment of CAD. Methods: We propose the Frequency-Domain Attention-Guided Diffusion Network (FAD-Net), which integrates a frequency-domain-based attention mechanism and a cascading diffusion strategy to fully exploit frequency-domain information for improved segmentation accuracy. Specifically, FAD-Net employs a Multi-Level Self-Attention (MLSA) mechanism in the frequency domain, computing the similarity between queries and keys across high- and low-frequency components in ICAs. Furthermore, a Low-Frequency Diffusion Module (LFDM) is incorporated to decompose ICAs into low- and high-frequency components via multi-level wavelet transformation. Subsequently, it refines fine-grained arterial branches and edges by reintegrating high-frequency details via inverse fusion, enabling continuous enhancement of anatomical precision. Results and Conclusions: Extensive experiments demonstrate that FAD-Net achieves a mean Dice coefficient of 0.8717 in coronary artery segmentation, outperforming existing state-of-the-art methods. In addition, it attains a true positive rate of 0.6140 and a positive predictive value of 0.6398 in stenosis detection, underscoring its clinical applicability. These findings suggest that FAD-Net holds significant potential to assist in the accurate diagnosis and treatment planning of CAD.
Related papers
- Myocardial Region-guided Feature Aggregation Net for Automatic Coronary artery Segmentation and Stenosis Assessment using Coronary Computed Tomography Angiography [13.885760158090692]
Myocardial Region-guided Feature Aggregation Net is a novel U-shaped dual-encoder architecture that integrates anatomical prior knowledge to enhance robustness in coronary artery segmentation.<n>Our framework incorporates three key innovations: (1) a Myocardial Region-guided Module that directs attention to coronary regions via bridging expansion and multi-scale feature fusion, (2) a Residual Feature Extraction Module that combines parallel spatial channel attention with residual blocks to enhance local-global feature discrimination, and (3) a Multi-scale Feature Fusion Module for adaptive aggregation of hierarchical vascular features.
arXiv Detail & Related papers (2025-04-27T16:43:52Z) - Comprehensive Evaluation of OCT-based Automated Segmentation of Retinal Layer, Fluid and Hyper-Reflective Foci: Impact on Diabetic Retinopathy Severity Assessment [0.0]
Diabetic retinopathy (DR) is a leading cause of vision loss, requiring early and accurate assessment to prevent irreversible damage.<n>This study proposes an active-learning-based deep learning pipeline for automated segmentation of retinal layers.
arXiv Detail & Related papers (2025-03-03T07:23:56Z) - Enhancing Angular Resolution via Directionality Encoding and Geometric Constraints in Brain Diffusion Tensor Imaging [70.66500060987312]
Diffusion-weighted imaging (DWI) is a type of Magnetic Resonance Imaging (MRI) technique sensitised to the diffusivity of water molecules.
This work proposes DirGeo-DTI, a deep learning-based method to estimate reliable DTI metrics even from a set of DWIs acquired with the minimum theoretical number (6) of gradient directions.
arXiv Detail & Related papers (2024-09-11T11:12:26Z) - Classification of Heart Sounds Using Multi-Branch Deep Convolutional Network and LSTM-CNN [2.7699831151653305]
This study develops and evaluates novel deep learning architectures that offer fast, accurate, and cost-effective methods for automatic diagnosis of cardiac diseases.<n>We propose two innovative methodologies: first, a Multi-Branch Deep Convolutional Neural Network (MBDCN) that emulates human auditory processing by utilizing diverse convolutional filter sizes and power spectrum input for enhanced feature extraction.<n>Second, a Long Short-Term Memory-Convolutional Neural (LSCN) model that integrates LSTM blocks with MBDCN to improve time-domain feature extraction.
arXiv Detail & Related papers (2024-07-15T13:02:54Z) - AGFA-Net: Attention-Guided and Feature-Aggregated Network for Coronary Artery Segmentation using Computed Tomography Angiography [5.583495103569884]
We propose an attention-guided, feature-aggregated 3D deep network (AGFA-Net) for coronary artery segmentation using CCTA images.
AGFA-Net leverages attention mechanisms and feature refinement modules to capture salient features and enhance segmentation accuracy.
Evaluation on a dataset comprising 1,000 CCTA scans demonstrates AGFA-Net's superior performance, achieving an average Dice coefficient similarity of 86.74% and a Hausdorff distance of 0.23 mm.
arXiv Detail & Related papers (2024-06-13T01:04:47Z) - A Deep Learning Model for Coronary Artery Segmentation and Quantitative Stenosis Detection in Angiographic Images [2.6879908098704544]
We propose a novel deep learning-based method for the automatic segmentation of coronary arteries in angiographic images.<n>The model combines the MedSAM and VM-UNet architectures to achieve high-performance results.<n>The stenosis detection algorithm achieved a true positive rate (TPR) of 0.5867 and a positive predictive value (PPV) of 0.5911.
arXiv Detail & Related papers (2024-06-01T16:45:33Z) - SQUWA: Signal Quality Aware DNN Architecture for Enhanced Accuracy in Atrial Fibrillation Detection from Noisy PPG Signals [37.788535094404644]
Atrial fibrillation (AF) significantly increases the risk of stroke, heart disease, and mortality.
Photoplethysmography ( PPG) signals are susceptible to corruption from motion artifacts and other factors often encountered in ambulatory settings.
We propose a novel deep learning model, designed to learn how to retain accurate predictions from partially corrupted PPG.
arXiv Detail & Related papers (2024-04-15T01:07:08Z) - Learning to diagnose cirrhosis from radiological and histological labels
with joint self and weakly-supervised pretraining strategies [62.840338941861134]
We propose to leverage transfer learning from large datasets annotated by radiologists, to predict the histological score available on a small annex dataset.
We compare different pretraining methods, namely weakly-supervised and self-supervised ones, to improve the prediction of the cirrhosis.
This method outperforms the baseline classification of the METAVIR score, reaching an AUC of 0.84 and a balanced accuracy of 0.75.
arXiv Detail & Related papers (2023-02-16T17:06:23Z) - Fuzzy Attention Neural Network to Tackle Discontinuity in Airway
Segmentation [67.19443246236048]
Airway segmentation is crucial for the examination, diagnosis, and prognosis of lung diseases.
Some small-sized airway branches (e.g., bronchus and terminaloles) significantly aggravate the difficulty of automatic segmentation.
This paper presents an efficient method for airway segmentation, comprising a novel fuzzy attention neural network and a comprehensive loss function.
arXiv Detail & Related papers (2022-09-05T16:38:13Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
An efficient analysis of large amounts of chest radiographs can aid physicians and radiologists.
We propose a novel Discrete Wavelet Transform (DWT)-based method for the efficient identification and encoding of visual information.
arXiv Detail & Related papers (2022-05-08T15:29:54Z) - Multi-Task Neural Networks with Spatial Activation for Retinal Vessel
Segmentation and Artery/Vein Classification [49.64863177155927]
We propose a multi-task deep neural network with spatial activation mechanism to segment full retinal vessel, artery and vein simultaneously.
The proposed network achieves pixel-wise accuracy of 95.70% for vessel segmentation, and A/V classification accuracy of 94.50%, which is the state-of-the-art performance for both tasks.
arXiv Detail & Related papers (2020-07-18T05:46:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.