論文の概要: Composite Data Augmentations for Synthetic Image Detection Against Real-World Perturbations
- arxiv url: http://arxiv.org/abs/2506.11490v1
- Date: Fri, 13 Jun 2025 06:28:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-16 17:50:49.675746
- Title: Composite Data Augmentations for Synthetic Image Detection Against Real-World Perturbations
- Title(参考訳): 実世界の摂動に対する合成画像検出のための複合データ拡張
- Authors: Efthymia Amarantidou, Christos Koutlis, Symeon Papadopoulos, Panagiotis C. Petrantonakis,
- Abstract要約: 合成画像検出(SID)ソリューションは、圧縮やその他の操作によってしばしば変更されるため、インターネットから生成された画像に苦労する。
本研究は,データ拡張組み合わせを探索し,遺伝的アルゴリズムを最適な拡張選択に活用し,二重基準最適化アプローチを導入することにより,SIDを向上させる。
本研究は,様々な品質・変換の合成画像の同定が可能な検出モデルの開発に有用な知見を提供する。
- 参考スコア(独自算出の注目度): 14.985516487680917
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The advent of accessible Generative AI tools enables anyone to create and spread synthetic images on social media, often with the intention to mislead, thus posing a significant threat to online information integrity. Most existing Synthetic Image Detection (SID) solutions struggle on generated images sourced from the Internet, as these are often altered by compression and other operations. To address this, our research enhances SID by exploring data augmentation combinations, leveraging a genetic algorithm for optimal augmentation selection, and introducing a dual-criteria optimization approach. These methods significantly improve model performance under real-world perturbations. Our findings provide valuable insights for developing detection models capable of identifying synthetic images across varying qualities and transformations, with the best-performing model achieving a mean average precision increase of +22.53% compared to models without augmentations. The implementation is available at github.com/efthimia145/sid-composite-data-augmentation.
- Abstract(参考訳): アクセス可能な生成AIツールの出現により、誰でもソーシャルメディア上で合成画像を作成し、広めることができるようになり、しばしば誤解を招く意図がある。
既存のSID(Synthetic Image Detection)ソリューションは、圧縮やその他の操作によってしばしば変更されるため、インターネットから生成された画像に苦労する。
そこで本研究では,データ拡張の組み合わせを探索し,遺伝的アルゴリズムを最適な拡張選択に活用し,二重基準最適化アプローチを導入することにより,SIDを向上させる。
これらの手法は実世界の摂動下でのモデル性能を著しく向上させる。
本研究は, 改良のないモデルと比較して, 平均精度+22.53%の精度向上を達成し, 様々な品質や変換にまたがる合成画像の同定が可能な検出モデルの開発に有用であることを示す。
実装はgithub.com/efthimia145/sid-composite-data-augmentationで利用可能である。
関連論文リスト
- CO-SPY: Combining Semantic and Pixel Features to Detect Synthetic Images by AI [58.35348718345307]
実際の画像とAI生成画像を区別する現在の取り組みには、一般化が欠如している可能性がある。
既存のセマンティック機能を強化した新しいフレームワークCo-Spyを提案する。
また、5つの実画像データセットと22の最先端生成モデルからなる包括的データセットであるCo-Spy-Benchを作成します。
論文 参考訳(メタデータ) (2025-03-24T01:59:29Z) - Enhancing Diffusion Models for High-Quality Image Generation [0.0]
本稿では,拡散確率モデル(DDPM)と拡散確率モデル(DDIM)の総合的な実装,評価,最適化について述べる。
推論中、これらのモデルはランダムノイズを入力とし、高画質な画像を出力として繰り返し生成する。
この研究の背景にあるのは、さまざまなデータセットをまたいだリアルなイメージを生成可能な、効率的でスケーラブルな生成AIモデルの需要が高まっていることだ。
論文 参考訳(メタデータ) (2024-12-19T00:23:15Z) - Semi-Truths: A Large-Scale Dataset of AI-Augmented Images for Evaluating Robustness of AI-Generated Image detectors [62.63467652611788]
実画像27,600枚、223,400枚、AI拡張画像1,472,700枚を含むSEMI-TRUTHSを紹介する。
それぞれの画像には、検出器のロバスト性の標準化と目標評価のためのメタデータが添付されている。
以上の結果から,現状の検出器は摂動の種類や程度,データ分布,拡張方法に様々な感度を示すことが示唆された。
論文 参考訳(メタデータ) (2024-11-12T01:17:27Z) - SIDBench: A Python Framework for Reliably Assessing Synthetic Image Detection Methods [9.213926755375024]
完全合成画像の作成は、ユニークな課題である。
ベンチマークデータセットの実験結果と、ワイルドなメソッドのパフォーマンスの間には、大きなギャップがしばしばあります。
本稿では,いくつかの最先端SIDモデルを統合するベンチマークフレームワークを提案する。
論文 参考訳(メタデータ) (2024-04-29T09:50:16Z) - Is Synthetic Image Useful for Transfer Learning? An Investigation into Data Generation, Volume, and Utilization [62.157627519792946]
ブリッジドトランスファー(ブリッジドトランスファー)と呼ばれる新しいフレームワークを導入する。このフレームワークは、当初、トレーニング済みモデルの微調整に合成画像を使用し、転送性を向上させる。
合成画像と実画像のスタイルアライメントを改善するために,データセットスタイルの逆変換方式を提案する。
提案手法は10の異なるデータセットと5つの異なるモデルで評価され、一貫した改善が示されている。
論文 参考訳(メタデータ) (2024-03-28T22:25:05Z) - DetDiffusion: Synergizing Generative and Perceptive Models for Enhanced Data Generation and Perception [78.26734070960886]
現在の知覚モデルは、リソース集約的なデータセットに大きく依存している。
セグメンテーションを通じて知覚認識損失(P.A.損失)を導入し、品質と制御性の両方を改善した。
本手法は,世代間における知覚認識属性(P.A. Attr)の抽出と利用により,データ拡張をカスタマイズする。
論文 参考訳(メタデータ) (2024-03-20T04:58:03Z) - Adaptive Input-image Normalization for Solving the Mode Collapse Problem in GAN-based X-ray Images [0.08192907805418582]
この研究は、適応入力-画像正規化をDeep Conversaal GANとAuxiliary GANと統合してモード崩壊問題を緩和する利点の実証的な実証に寄与する。
その結果, 適応入出力正規化によるDCGANとACGANは, 非正規化X線画像でDCGANとACGANより優れていた。
論文 参考訳(メタデータ) (2023-09-21T16:43:29Z) - Image Augmentations for GAN Training [57.65145659417266]
我々は,バニラGANとGANの両方のイメージを正規化して拡張する方法に関する洞察とガイドラインを提供する。
意外なことに、Vanilla GANsは、最近の最先端の結果と同等の世代品質を実現している。
論文 参考訳(メタデータ) (2020-06-04T00:16:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。