Investigating Vulnerabilities and Defenses Against Audio-Visual Attacks: A Comprehensive Survey Emphasizing Multimodal Models
- URL: http://arxiv.org/abs/2506.11521v1
- Date: Fri, 13 Jun 2025 07:22:36 GMT
- Title: Investigating Vulnerabilities and Defenses Against Audio-Visual Attacks: A Comprehensive Survey Emphasizing Multimodal Models
- Authors: Jinming Wen, Xinyi Wu, Shuai Zhao, Yanhao Jia, Yuwen Li,
- Abstract summary: Multimodal large language models (MLLMs) bridge the gap between audio-visual and natural language processing.<n>Despite the superior performance of MLLMs, the scarcity of high-quality audio-visual training data and computational resources necessitates the utilization of third-party data and open-source MLLMs.<n> Empirical studies demonstrate that the latest MLLMs can be manipulated to produce malicious or harmful content.
- Score: 25.23931196918614
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multimodal large language models (MLLMs), which bridge the gap between audio-visual and natural language processing, achieve state-of-the-art performance on several audio-visual tasks. Despite the superior performance of MLLMs, the scarcity of high-quality audio-visual training data and computational resources necessitates the utilization of third-party data and open-source MLLMs, a trend that is increasingly observed in contemporary research. This prosperity masks significant security risks. Empirical studies demonstrate that the latest MLLMs can be manipulated to produce malicious or harmful content. This manipulation is facilitated exclusively through instructions or inputs, including adversarial perturbations and malevolent queries, effectively bypassing the internal security mechanisms embedded within the models. To gain a deeper comprehension of the inherent security vulnerabilities associated with audio-visual-based multimodal models, a series of surveys investigates various types of attacks, including adversarial and backdoor attacks. While existing surveys on audio-visual attacks provide a comprehensive overview, they are limited to specific types of attacks, which lack a unified review of various types of attacks. To address this issue and gain insights into the latest trends in the field, this paper presents a comprehensive and systematic review of audio-visual attacks, which include adversarial attacks, backdoor attacks, and jailbreak attacks. Furthermore, this paper also reviews various types of attacks in the latest audio-visual-based MLLMs, a dimension notably absent in existing surveys. Drawing upon comprehensive insights from a substantial review, this paper delineates both challenges and emergent trends for future research on audio-visual attacks and defense.
Related papers
- Watch, Listen, Understand, Mislead: Tri-modal Adversarial Attacks on Short Videos for Content Appropriateness Evaluation [1.0012740151280692]
This paper introduces a framework for evaluating the tri-modal safety of Multimodal Large Language Models (MLLMs)<n>We present the Short-Video Multimodal Adversarial dataset, comprising diverse short-form videos with human-guided synthetic adversarial attacks.<n> Extensive experiments on state-of-the-art MLLMs reveal significant vulnerabilities with high Attack Success Rates (ASR)
arXiv Detail & Related papers (2025-07-16T07:02:15Z) - Align is not Enough: Multimodal Universal Jailbreak Attack against Multimodal Large Language Models [83.80177564873094]
We propose a unified multimodal universal jailbreak attack framework.<n>We evaluate the undesirable context generation of MLLMs like LLaVA, Yi-VL, MiniGPT4, MiniGPT-v2, and InstructBLIP.<n>This study underscores the urgent need for robust safety measures in MLLMs.
arXiv Detail & Related papers (2025-06-02T04:33:56Z) - Transferable Adversarial Attacks on Black-Box Vision-Language Models [63.22532779621001]
adversarial attacks can transfer from open-source to proprietary black-box models in text-only and vision-only contexts.<n>We show that attackers can craft perturbations to induce specific attacker-chosen interpretations of visual information.<n>We discover that universal perturbations -- modifications applicable to a wide set of images -- can consistently induce these misinterpretations.
arXiv Detail & Related papers (2025-05-02T06:51:11Z) - Unlearning Sensitive Information in Multimodal LLMs: Benchmark and Attack-Defense Evaluation [88.78166077081912]
We introduce a multimodal unlearning benchmark, UnLOK-VQA, and an attack-and-defense framework to evaluate methods for deleting specific multimodal knowledge from MLLMs.<n>Our results show multimodal attacks outperform text- or image-only ones, and that the most effective defense removes answer information from internal model states.
arXiv Detail & Related papers (2025-05-01T01:54:00Z) - `Do as I say not as I do': A Semi-Automated Approach for Jailbreak Prompt Attack against Multimodal LLMs [33.49407213040455]
We introduce the first voice-based jailbreak attack against multimodal large language models (LLMs)<n>We propose a novel strategy, in which the disallowed prompt is flanked by benign, narrative-driven prompts.<n>We demonstrate that Flanking Attack is capable of manipulating state-of-the-art LLMs into generating misaligned and forbidden outputs.
arXiv Detail & Related papers (2025-02-02T10:05:08Z) - Seeing is Deceiving: Exploitation of Visual Pathways in Multi-Modal Language Models [0.0]
Multi-Modal Language Models (MLLMs) have transformed artificial intelligence by combining visual and text data.
Attackers can manipulate either the visual or text inputs, or both, to make the model produce unintended or even harmful responses.
This paper reviews how visual inputs in MLLMs can be exploited by various attack strategies.
arXiv Detail & Related papers (2024-11-07T16:21:18Z) - Securing Large Language Models: Addressing Bias, Misinformation, and Prompt Attacks [12.893445918647842]
Large Language Models (LLMs) demonstrate impressive capabilities across various fields, yet their increasing use raises critical security concerns.
This article reviews recent literature addressing key issues in LLM security, with a focus on accuracy, bias, content detection, and vulnerability to attacks.
arXiv Detail & Related papers (2024-09-12T14:42:08Z) - A Survey of Attacks on Large Vision-Language Models: Resources, Advances, and Future Trends [78.3201480023907]
Large Vision-Language Models (LVLMs) have demonstrated remarkable capabilities across a wide range of multimodal understanding and reasoning tasks.
The vulnerability of LVLMs is relatively underexplored, posing potential security risks in daily usage.
In this paper, we provide a comprehensive review of the various forms of existing LVLM attacks.
arXiv Detail & Related papers (2024-07-10T06:57:58Z) - A Survey on Detection of LLMs-Generated Content [97.87912800179531]
The ability to detect LLMs-generated content has become of paramount importance.
We aim to provide a detailed overview of existing detection strategies and benchmarks.
We also posit the necessity for a multi-faceted approach to defend against various attacks.
arXiv Detail & Related papers (2023-10-24T09:10:26Z) - Survey of Vulnerabilities in Large Language Models Revealed by
Adversarial Attacks [5.860289498416911]
Large Language Models (LLMs) are swiftly advancing in architecture and capability.
As they integrate more deeply into complex systems, the urgency to scrutinize their security properties grows.
This paper surveys research in the emerging interdisciplinary field of adversarial attacks on LLMs.
arXiv Detail & Related papers (2023-10-16T21:37:24Z) - Visual Adversarial Examples Jailbreak Aligned Large Language Models [66.53468356460365]
We show that the continuous and high-dimensional nature of the visual input makes it a weak link against adversarial attacks.
We exploit visual adversarial examples to circumvent the safety guardrail of aligned LLMs with integrated vision.
Our study underscores the escalating adversarial risks associated with the pursuit of multimodality.
arXiv Detail & Related papers (2023-06-22T22:13:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.