論文の概要: Efficient LLM Collaboration via Planning
- arxiv url: http://arxiv.org/abs/2506.11578v2
- Date: Sat, 27 Sep 2025 14:19:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-30 14:13:47.355844
- Title: Efficient LLM Collaboration via Planning
- Title(参考訳): プランニングによる効率的なLLM協調
- Authors: Byeongchan Lee, Jonghoon Lee, Dongyoung Kim, Jaehyung Kim, Kyungjoon Park, Dongjun Lee, Jinwoo Shin,
- Abstract要約: 小規模で大規模なモデルでは、プランナーと実行担当者として交代で行動し、タスクを協調的に解決するために、多段階のカスケードでプランを交換する。
私たちはCOPEが大規模プロプライエタリモデルに匹敵するパフォーマンスを実現し,推論APIのコストを大幅に削減できることを実証した。
- 参考スコア(独自算出の注目度): 56.081879390960204
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, large language models (LLMs) have demonstrated strong performance, ranging from simple to complex tasks. However, while large proprietary models (e.g., models with over 100B parameters) achieve remarkable results across diverse tasks, they are often accessible through costly APIs, making frequent use too costly for many applications. In contrast, small open-source models (e.g., models with fewer than 3B parameters) are freely available and easy to deploy locally, but their performance on complex tasks remains limited. This trade-off raises a natural question: how can small and large models efficiently collaborate to combine their complementary strengths? To bridge this trade-off, we propose COPE, a test-time collaboration framework. A planner model first generates a plan, a high-level abstraction of the task, and this plan serves as a lightweight intermediate that guides a downstream executor model. Small and large models take turns acting as planner and executor, exchanging plans in a multi-stage cascade to collaboratively solve tasks. Through comprehensive experiments on benchmarks spanning mathematical reasoning, code generation, open-ended tasks, and agent tasks, we demonstrate that COPE achieves performance comparable to large proprietary models, while drastically reducing the inference API cost. These results highlight planning as an effective prior for cost-efficient inference.
- Abstract(参考訳): 近年、大規模言語モデル(LLM)は、単純なタスクから複雑なタスクまで、強力なパフォーマンスを示している。
しかし、大規模なプロプライエタリなモデル(例:100B以上のパラメータを持つモデル)は、様々なタスクにまたがって顕著な結果をもたらす一方で、コストの高いAPIを通じてアクセスされることも多く、多くのアプリケーションで頻繁に使用するにはコストがかかりすぎる。
対照的に、小さなオープンソースモデル(例:3Bパラメータ未満のモデル)は、自由に利用でき、ローカルにデプロイできるが、複雑なタスクにおけるパフォーマンスは制限されている。
このトレードオフは自然な疑問を提起する。小さなモデルと大きなモデルはどのように効率的に協力し、相補的な強みを組み合わせられるのか?
このトレードオフを埋めるため,テストタイムコラボレーションフレームワークであるCOPEを提案する。
プランナーモデルはまず、タスクの高レベルな抽象化であるプランを生成し、このプランは、下流のエグゼキュータモデルをガイドする軽量な中間体として機能する。
小規模で大規模なモデルでは、プランナーと実行担当者として交代で行動し、タスクを協調的に解決するために、多段階のカスケードでプランを交換する。
数学的推論,コード生成,オープンエンドタスク,エージェントタスクを含むベンチマークに関する総合的な実験を通じて,COPEが大規模プロプライエタリモデルに匹敵するパフォーマンスを実現し,推論APIのコストを大幅に削減することを示した。
これらの結果は、コスト効率のよい推論に有効な事前計画であることを強調している。
関連論文リスト
- Route-and-Reason: Scaling Large Language Model Reasoning with Reinforced Model Router [9.580226379350737]
大規模言語モデルの問題解決能力を高めるためには,多段階推論が不可欠であることが証明されている。
しかし、多くの推論ステップは比較的単純であり、より効率的な小規模言語モデルで処理できる。
異種LLM間の協調推論を可能にする新しいフレームワークであるR2-Reasonerを提案する。
論文 参考訳(メタデータ) (2025-06-06T09:18:56Z) - LightRouter: Towards Efficient LLM Collaboration with Minimal Overhead [19.573553157421774]
Lightは、より大きなプールからLLMの小さなサブセットを体系的に選択、統合するために設計された新しいフレームワークである。
実験によると、光は広く使われているアンサンブルのベースラインと一致し、25%の精度向上を実現している。
本研究は、効率的なLCM選択のための実践的なアプローチを導入し、モデル組み合わせのための最適な戦略に関する貴重な洞察を提供する。
論文 参考訳(メタデータ) (2025-05-22T04:46:04Z) - Plan and Budget: Effective and Efficient Test-Time Scaling on Large Language Model Reasoning [19.258292534503887]
Plan-and-Budgetは、複雑なクエリをサブクエストに分解し、適応スケジューリングを使用して推定複雑性に基づいてトークン予算を割り当てる、モデルに依存しないテストタイムフレームワークである。
Plan-and-Budgetは、様々なタスクやモデルにわたる推論効率を改善し、最大で70%の精度向上、39%のトークン削減、および$E3$の+187.5%の改善を実現している。
論文 参考訳(メタデータ) (2025-05-22T01:56:29Z) - CoLA: Collaborative Low-Rank Adaptation [3.421904493396495]
特定のタスクに対する事前学習モデルの微調整は、高い性能を達成するが、計算的に高価で非効率である。
LoRAは特に有効であることが証明されているが、マルチタスクシナリオへの応用はタスク間の干渉によって制限されている。
我々は、より柔軟なLoRAアーキテクチャと3つの協調戦略であるCoLAを提案し、$A$と$B$の間の量的関係をよりよく活用することでパフォーマンスを向上させる。
論文 参考訳(メタデータ) (2025-05-21T12:46:42Z) - Scalable Chain of Thoughts via Elastic Reasoning [61.75753924952059]
Elastic Reasoningは、スケーラブルな思考の連鎖のための新しいフレームワークである。
推論は、独立して割り当てられた予算で、思考と解決の2つのフェーズに分けられる。
我々のアプローチは、制約のない設定でもより簡潔で効率的な推論をもたらす。
論文 参考訳(メタデータ) (2025-05-08T15:01:06Z) - Improving Large Models with Small models: Lower Costs and Better Performance [81.55672406002715]
我々は,小型モデルと大規模モデルの協調のための一般的なパラダイムであるData Shunt$+$ (DS$+$)を提案する。
例えば、ChatGPTはAmazon Productの感情分析で9,43%の精度を達成し、DS$+は9,5.64%の精度を達成している。
論文 参考訳(メタデータ) (2024-06-15T14:44:43Z) - MAP: Low-compute Model Merging with Amortized Pareto Fronts via Quadratic Approximation [80.47072100963017]
Amortized Pareto Front (MAP) を用いた新しい低演算アルゴリズム Model Merging を導入する。
MAPは、複数のモデルをマージするためのスケーリング係数のセットを効率的に識別し、関連するトレードオフを反映する。
また,タスク数が比較的少ないシナリオではベイジアンMAP,タスク数の多い状況ではNested MAPを導入し,計算コストを削減した。
論文 参考訳(メタデータ) (2024-06-11T17:55:25Z) - Towards Efficient LLM Grounding for Embodied Multi-Agent Collaboration [70.09561665520043]
本稿では,多エージェント協調のための新しいフレームワークを提案する。これは,効率的な自己調整のための強化アドバンテージフィードバック(Reinforced Advantage feedback, ReAd)を導入する。
強化学習における重み付き回帰を多エージェントシステムに拡張して理論的解析を行う。
Over-AIと難解なRoCoBenchの実験は、ReAdが成功率のベースラインを超え、エージェントの相互作用ステップを著しく減少させることを示している。
論文 参考訳(メタデータ) (2024-05-23T08:33:19Z) - Optimising Calls to Large Language Models with Uncertainty-Based Two-Tier Selection [80.63946798650653]
決定は、より優れた性能を持つ大型LCMを使うか、より少ないコストで使用するかに重点を置いている。
我々は,LLMの世代間不確実性のみを意思決定基準として,より単純な解を提案する。
実験の結果、この単純な解はコストと性能を最適にバランスさせ、27の試験装置中25の既存手法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2024-05-03T14:38:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。