Easy3D: A Simple Yet Effective Method for 3D Interactive Segmentation
- URL: http://arxiv.org/abs/2504.11024v1
- Date: Tue, 15 Apr 2025 09:49:51 GMT
- Title: Easy3D: A Simple Yet Effective Method for 3D Interactive Segmentation
- Authors: Andrea Simonelli, Norman Müller, Peter Kontschieder,
- Abstract summary: We introduce a 3D interactive segmentation method that consistently surpasses previous state-of-the-art techniques on both in-domain and out-of-domain datasets.<n>Our simple approach integrates a voxel-based sparse encoder with a lightweight transformer-based decoder that implements implicit click fusion.<n>Our method demonstrates substantial improvements on benchmark datasets, including ScanNet, ScanNet++, S3DIS, and KITTI-360.
- Score: 10.2138250640885
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The increasing availability of digital 3D environments, whether through image-based 3D reconstruction, generation, or scans obtained by robots, is driving innovation across various applications. These come with a significant demand for 3D interaction, such as 3D Interactive Segmentation, which is useful for tasks like object selection and manipulation. Additionally, there is a persistent need for solutions that are efficient, precise, and performing well across diverse settings, particularly in unseen environments and with unfamiliar objects. In this work, we introduce a 3D interactive segmentation method that consistently surpasses previous state-of-the-art techniques on both in-domain and out-of-domain datasets. Our simple approach integrates a voxel-based sparse encoder with a lightweight transformer-based decoder that implements implicit click fusion, achieving superior performance and maximizing efficiency. Our method demonstrates substantial improvements on benchmark datasets, including ScanNet, ScanNet++, S3DIS, and KITTI-360, and also on unseen geometric distributions such as the ones obtained by Gaussian Splatting. The project web-page is available at https://simonelli-andrea.github.io/easy3d.
Related papers
- DIRECT-3D: Learning Direct Text-to-3D Generation on Massive Noisy 3D Data [50.164670363633704]
We present DIRECT-3D, a diffusion-based 3D generative model for creating high-quality 3D assets from text prompts.
Our model is directly trained on extensive noisy and unaligned in-the-wild' 3D assets.
We achieve state-of-the-art performance in both single-class generation and text-to-3D generation.
arXiv Detail & Related papers (2024-06-06T17:58:15Z) - Semantic Gaussians: Open-Vocabulary Scene Understanding with 3D Gaussian Splatting [27.974762304763694]
We introduce Semantic Gaussians, a novel open-vocabulary scene understanding approach based on 3D Gaussian Splatting.
Unlike existing methods, we design a versatile projection approach that maps various 2D semantic features into a novel semantic component of 3D Gaussians.
We build a 3D semantic network that directly predicts the semantic component from raw 3D Gaussians for fast inference.
arXiv Detail & Related papers (2024-03-22T21:28:19Z) - Oriented-grid Encoder for 3D Implicit Representations [10.02138130221506]
This paper is the first to exploit 3D characteristics in 3D geometric encoders explicitly.
Our method gets state-of-the-art results when compared to the prior techniques.
arXiv Detail & Related papers (2024-02-09T19:28:13Z) - SAI3D: Segment Any Instance in 3D Scenes [68.57002591841034]
We introduce SAI3D, a novel zero-shot 3D instance segmentation approach.
Our method partitions a 3D scene into geometric primitives, which are then progressively merged into 3D instance segmentations.
Empirical evaluations on ScanNet, Matterport3D and the more challenging ScanNet++ datasets demonstrate the superiority of our approach.
arXiv Detail & Related papers (2023-12-17T09:05:47Z) - DatasetNeRF: Efficient 3D-aware Data Factory with Generative Radiance Fields [68.94868475824575]
This paper introduces a novel approach capable of generating infinite, high-quality 3D-consistent 2D annotations alongside 3D point cloud segmentations.
We leverage the strong semantic prior within a 3D generative model to train a semantic decoder.
Once trained, the decoder efficiently generalizes across the latent space, enabling the generation of infinite data.
arXiv Detail & Related papers (2023-11-18T21:58:28Z) - AutoDecoding Latent 3D Diffusion Models [95.7279510847827]
We present a novel approach to the generation of static and articulated 3D assets that has a 3D autodecoder at its core.
The 3D autodecoder framework embeds properties learned from the target dataset in the latent space.
We then identify the appropriate intermediate volumetric latent space, and introduce robust normalization and de-normalization operations.
arXiv Detail & Related papers (2023-07-07T17:59:14Z) - Unifying Voxel-based Representation with Transformer for 3D Object
Detection [143.91910747605107]
We present a unified framework for multi-modality 3D object detection, named UVTR.
The proposed method aims to unify multi-modality representations in the voxel space for accurate and robust single- or cross-modality 3D detection.
UVTR achieves leading performance in the nuScenes test set with 69.7%, 55.1%, and 71.1% NDS for LiDAR, camera, and multi-modality inputs, respectively.
arXiv Detail & Related papers (2022-06-01T17:02:40Z) - HVPR: Hybrid Voxel-Point Representation for Single-stage 3D Object
Detection [39.64891219500416]
3D object detection methods exploit either voxel-based or point-based features to represent 3D objects in a scene.
We introduce in this paper a novel single-stage 3D detection method having the merit of both voxel-based and point-based features.
arXiv Detail & Related papers (2021-04-02T06:34:49Z) - Reinforced Axial Refinement Network for Monocular 3D Object Detection [160.34246529816085]
Monocular 3D object detection aims to extract the 3D position and properties of objects from a 2D input image.
Conventional approaches sample 3D bounding boxes from the space and infer the relationship between the target object and each of them, however, the probability of effective samples is relatively small in the 3D space.
We propose to start with an initial prediction and refine it gradually towards the ground truth, with only one 3d parameter changed in each step.
This requires designing a policy which gets a reward after several steps, and thus we adopt reinforcement learning to optimize it.
arXiv Detail & Related papers (2020-08-31T17:10:48Z) - Virtual Multi-view Fusion for 3D Semantic Segmentation [11.259694096475766]
We show that our virtual views enable more effective training of 2D semantic segmentation networks than previous multiview approaches.
When the 2D per pixel predictions are aggregated on 3D surfaces, our virtual multiview fusion method is able to achieve significantly better 3D semantic segmentation results.
arXiv Detail & Related papers (2020-07-26T14:46:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.