論文の概要: LLMs on support of privacy and security of mobile apps: state of the art and research directions
- arxiv url: http://arxiv.org/abs/2506.11679v1
- Date: Fri, 13 Jun 2025 11:17:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-16 17:50:49.765222
- Title: LLMs on support of privacy and security of mobile apps: state of the art and research directions
- Title(参考訳): モバイルアプリのプライバシとセキュリティに関するLLM - 最先端技術と研究の方向性
- Authors: Tran Thanh Lam Nguyen, Barbara Carminati, Elena Ferrari,
- Abstract要約: セキュリティとプライバシーのリスクは依然としてモバイルアプリのユーザーを脅かす。
セキュリティリスクとプライバシ違反を特定するために,大規模言語モデルの適用について検討する。
ユーザが画像をオンラインで共有する場合に,機密データ漏洩を検出する手法を提案する。
- 参考スコア(独自算出の注目度): 1.5293427903448022
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Modern life has witnessed the explosion of mobile devices. However, besides the valuable features that bring convenience to end users, security and privacy risks still threaten users of mobile apps. The increasing sophistication of these threats in recent years has underscored the need for more advanced and efficient detection approaches. In this chapter, we explore the application of Large Language Models (LLMs) to identify security risks and privacy violations and mitigate them for the mobile application ecosystem. By introducing state-of-the-art research that applied LLMs to mitigate the top 10 common security risks of smartphone platforms, we highlight the feasibility and potential of LLMs to replace traditional analysis methods, such as dynamic and hybrid analysis of mobile apps. As a representative example of LLM-based solutions, we present an approach to detect sensitive data leakage when users share images online, a common behavior of smartphone users nowadays. Finally, we discuss open research challenges.
- Abstract(参考訳): 現代の生活はモバイルデバイスの爆発を目撃している。
しかし、エンドユーザーに利便性をもたらす価値ある機能に加えて、セキュリティとプライバシーのリスクは依然としてモバイルアプリのユーザーを脅かしている。
近年、これらの脅威の高度化が進み、より高度で効率的な検出アプローチの必要性が強調されている。
この章では、セキュリティリスクとプライバシ違反を特定し、モバイルアプリケーションエコシステムのためにそれらを緩和するために、LLM(Large Language Models)の適用について検討する。
スマートフォンプラットフォームのセキュリティリスクのトップ10を緩和するためにLLMを適用した最先端の研究を導入することで、モバイルアプリの動的およびハイブリッド分析のような従来の分析手法を置き換えるためのLLMの可能性と可能性を強調します。
LLMベースのソリューションの代表例として,ユーザが画像をオンラインで共有する際の機密データ漏洩を検出するアプローチを提案する。
最後にオープンな研究課題について論じる。
関連論文リスト
- A Survey on Privacy Risks and Protection in Large Language Models [13.602836059584682]
大規模言語モデル(LLM)は多様なアプリケーションにますます統合され、プライバシーの懸念が高まっている。
この調査は、LCMに関連するプライバシーリスクの包括的概要を提供し、これらの課題を軽減するための現在のソリューションを調べます。
論文 参考訳(メタデータ) (2025-05-04T03:04:07Z) - LLMs in Mobile Apps: Practices, Challenges, and Opportunities [4.104646810514711]
AI技術の統合は、ソフトウェア開発でますます人気が高まっている。
大規模言語モデル(LLM)と生成AIの台頭により、開発者は、クローズドソースプロバイダから豊富な高品質のオープンソースモデルとAPIにアクセスできるようになる。
論文 参考訳(メタデータ) (2025-02-21T19:53:43Z) - Navigating the Risks: A Survey of Security, Privacy, and Ethics Threats in LLM-Based Agents [67.07177243654485]
この調査は、大規模言語モデルに基づくエージェントが直面するさまざまな脅威を収集、分析する。
LLMをベースとしたエージェントの6つの重要な特徴を概説する。
4つの代表エージェントをケーススタディとして選択し,実践的に直面する可能性のあるリスクを分析した。
論文 参考訳(メタデータ) (2024-11-14T15:40:04Z) - The Emerged Security and Privacy of LLM Agent: A Survey with Case Studies [43.65655064122938]
大規模言語モデル(LLM)エージェントは複雑なタスクを実行するために進化してきた。
LLMエージェントの幅広い応用は、その商業的価値を示している。
しかし、セキュリティとプライバシの脆弱性も公開している。
この調査は、LLMエージェントが直面しているプライバシーとセキュリティの問題を包括的に概観することを目的としている。
論文 参考訳(メタデータ) (2024-07-28T00:26:24Z) - "Glue pizza and eat rocks" -- Exploiting Vulnerabilities in Retrieval-Augmented Generative Models [74.05368440735468]
Retrieval-Augmented Generative (RAG)モデルにより大規模言語モデル(LLM)が強化される
本稿では,これらの知識基盤の開放性を敵が活用できるセキュリティ上の脅威を示す。
論文 参考訳(メタデータ) (2024-06-26T05:36:23Z) - Privacy in Large Language Models: Attacks, Defenses and Future Directions [84.73301039987128]
大規模言語モデル(LLM)を対象とした現在のプライバシ攻撃を分析し、敵の想定能力に応じて分類する。
本稿では、これらのプライバシー攻撃に対抗するために開発された防衛戦略について概説する。
論文 参考訳(メタデータ) (2023-10-16T13:23:54Z) - Vulnerability of Machine Learning Approaches Applied in IoT-based Smart Grid: A Review [51.31851488650698]
機械学習(ML)は、IoT(Internet-of-Things)ベースのスマートグリッドでの使用頻度が高まっている。
電力信号に注入された逆方向の歪みは システムの正常な制御と操作に大きな影響を及ぼす
安全クリティカルパワーシステムに適用されたMLsgAPPの脆弱性評価を行うことが不可欠である。
論文 参考訳(メタデータ) (2023-08-30T03:29:26Z) - Not what you've signed up for: Compromising Real-World LLM-Integrated
Applications with Indirect Prompt Injection [64.67495502772866]
大規模言語モデル(LLM)は、様々なアプリケーションに統合されつつある。
本稿では、プロンプトインジェクション攻撃を用いて、攻撃者が元の命令をオーバーライドし、制御を採用する方法を示す。
我々は、コンピュータセキュリティの観点から、影響や脆弱性を体系的に調査する包括的な分類法を導出する。
論文 参考訳(メタデータ) (2023-02-23T17:14:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。