論文の概要: Exploring the Effectiveness of Deep Features from Domain-Specific Foundation Models in Retinal Image Synthesis
- arxiv url: http://arxiv.org/abs/2506.11753v1
- Date: Fri, 13 Jun 2025 13:09:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-16 17:50:49.798417
- Title: Exploring the Effectiveness of Deep Features from Domain-Specific Foundation Models in Retinal Image Synthesis
- Title(参考訳): 網膜画像合成におけるドメイン特化基礎モデルからの深部特徴の探索
- Authors: Zuzanna Skorniewska, Bartlomiej W. Papiez,
- Abstract要約: 医療画像におけるニューラルネットワークモデルの採用は、厳格なプライバシー規制、データ可用性の制限、高い取得コスト、人口統計バイアスによって制限されている。
本研究では,大規模なドメインデータ,カラー・ファンド・イメージングに基づいて訓練された大規模基盤モデルの深部活性化層に基づく距離ベース損失関数が,知覚的損失とエッジ検出に基づく損失関数よりも有利であるかどうかを実験的に検討した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The adoption of neural network models in medical imaging has been constrained by strict privacy regulations, limited data availability, high acquisition costs, and demographic biases. Deep generative models offer a promising solution by generating synthetic data that bypasses privacy concerns and addresses fairness by producing samples for under-represented groups. However, unlike natural images, medical imaging requires validation not only for fidelity (e.g., Fr\'echet Inception Score) but also for morphological and clinical accuracy. This is particularly true for colour fundus retinal imaging, which requires precise replication of the retinal vascular network, including vessel topology, continuity, and thickness. In this study, we in-vestigated whether a distance-based loss function based on deep activation layers of a large foundational model trained on large corpus of domain data, colour fundus imaging, offers advantages over a perceptual loss and edge-detection based loss functions. Our extensive validation pipeline, based on both domain-free and domain specific tasks, suggests that domain-specific deep features do not improve autoen-coder image generation. Conversely, our findings highlight the effectiveness of con-ventional edge detection filters in improving the sharpness of vascular structures in synthetic samples.
- Abstract(参考訳): 医療画像におけるニューラルネットワークモデルの採用は、厳格なプライバシー規制、データ可用性の制限、高い取得コスト、人口統計バイアスによって制限されている。
深層生成モデルは、プライバシの懸念を回避し、表現されていないグループのためのサンプルを生成することによって公正に対処する合成データを生成することによって、有望なソリューションを提供する。
しかし、自然画像とは異なり、医用画像は忠実度(例えばFr'echet Inception Score)だけでなく、形態学的および臨床的精度にも検証が必要である。
これは、血管のトポロジー、連続性、厚みを含む網膜血管網の正確な複製を必要とする色の基底網膜イメージングに特に当てはまる。
本研究では,大規模なドメインデータ,カラー・ファンド・イメージングに基づいて訓練された大規模基盤モデルの深部活性化層に基づく距離ベース損失関数が,知覚的損失とエッジ検出に基づく損失関数よりも有利であるかどうかを実験的に検討した。
ドメインに依存しないタスクとドメイン固有のタスクの両方に基づいた広範な検証パイプラインは、ドメイン固有のディープ機能がオートエンコーダ画像生成を改善していないことを示唆している。
逆に, 合成試料の血管構造の鋭さ向上に際し, コンベンショナルエッジ検出フィルタの有効性が示唆された。
関連論文リスト
- PathSegDiff: Pathology Segmentation using Diffusion model representations [63.20694440934692]
そこで我々は,Latent Diffusion Models (LDMs) を事前学習した特徴抽出器として活用する,病理組織像分割の新しい手法であるPathSegDiffを提案する。
本手法は,H&E染色組織像から多彩な意味情報を抽出するために,自己教師型エンコーダによって誘導される病理特異的LCMを用いる。
本実験は,BCSSおよびGlaSデータセットにおける従来の手法よりも大幅に改善されたことを示す。
論文 参考訳(メタデータ) (2025-04-09T14:58:21Z) - Controllable retinal image synthesis using conditional StyleGAN and latent space manipulation for improved diagnosis and grading of diabetic retinopathy [0.0]
本稿では,高忠実かつ多様なDRファウンダス画像を生成するためのフレームワークを提案する。
生成画像内のDR重大度と視覚的特徴を包括的に制御する。
我々は、条件付きで生成したDR画像をグレードで操作し、データセットの多様性をさらに向上する。
論文 参考訳(メタデータ) (2024-09-11T17:08:28Z) - Deep Angiogram: Trivializing Retinal Vessel Segmentation [1.8479315677380455]
本研究では,無関係な特徴をフィルタリングし,深部血管造影という潜像を合成するコントラスト型変分自動エンコーダを提案する。
合成ネットワークの一般化性は、画像コントラストとノイズの特徴の変動に敏感なモデルを実現するコントラスト損失によって改善される。
論文 参考訳(メタデータ) (2023-07-01T06:13:10Z) - Synthetic optical coherence tomography angiographs for detailed retinal
vessel segmentation without human annotations [12.571349114534597]
本稿では,より高速でリアルなOCTA合成のために,空間コロニー化に基づく網膜血管網の軽量なシミュレーションを行う。
本研究では,3つの公開データセットに対する定量的および定性的実験において,提案手法の優れたセグメンテーション性能を示す。
論文 参考訳(メタデータ) (2023-06-19T14:01:47Z) - Unsupervised Domain Transfer with Conditional Invertible Neural Networks [83.90291882730925]
条件付き可逆ニューラルネットワーク(cINN)に基づくドメイン転送手法を提案する。
提案手法は本質的に,その可逆的アーキテクチャによるサイクル一貫性を保証し,ネットワークトレーニングを最大限効率的に行うことができる。
提案手法は,2つの下流分類タスクにおいて,現実的なスペクトルデータの生成を可能にし,その性能を向上する。
論文 参考訳(メタデータ) (2023-03-17T18:00:27Z) - Adapting Pretrained Vision-Language Foundational Models to Medical
Imaging Domains [3.8137985834223502]
臨床の文脈を忠実に描写する医療画像の生成モデルを構築することは、医療データセットの不明瞭さを軽減するのに役立つ。
安定拡散パイプラインのサブコンポーネントを探索し、モデルを微調整して医用画像を生成する。
我々の最良の性能モデルは、安定な拡散ベースラインを改善し、合成ラジオグラフィ画像に現実的な異常を挿入するように条件付けすることができる。
論文 参考訳(メタデータ) (2022-10-09T01:43:08Z) - Sharp-GAN: Sharpness Loss Regularized GAN for Histopathology Image
Synthesis [65.47507533905188]
コンディショナル・ジェネレーショナル・ジェネレーティブ・逆境ネットワークは、合成病理像を生成するために応用されている。
そこで我々は,現実的な病理像を合成するために,シャープネスロス正則化生成対向ネットワークを提案する。
論文 参考訳(メタデータ) (2021-10-27T18:54:25Z) - Data-driven generation of plausible tissue geometries for realistic
photoacoustic image synthesis [53.65837038435433]
光音響トモグラフィ(pat)は形態的および機能的組織特性を回復する可能性がある。
我々は,PATデータシミュレーションの新たなアプローチを提案し,これを「シミュレーションの学習」と呼ぶ。
我々は、意味的注釈付き医療画像データに基づいて訓練されたGAN(Generative Adversarial Networks)の概念を活用して、可塑性組織ジオメトリを生成する。
論文 参考訳(メタデータ) (2021-03-29T11:30:18Z) - Modeling and Enhancing Low-quality Retinal Fundus Images [167.02325845822276]
低画質の眼底画像は臨床観察における不確実性を高め、誤診のリスクを引き起こす。
本稿では,グローバルな劣化要因を抑えるために,臨床指向の基盤拡張ネットワーク(cofe-Net)を提案する。
合成画像と実画像の両方の実験により、我々のアルゴリズムは網膜の細部を失うことなく、低品質の眼底画像を効果的に補正することを示した。
論文 参考訳(メタデータ) (2020-05-12T08:01:16Z) - Retinopathy of Prematurity Stage Diagnosis Using Object Segmentation and
Convolutional Neural Networks [68.96150598294072]
未熟児網膜症(英: Retinopathy of Prematurity、ROP)は、主に体重の低い未熟児に影響を及ぼす眼疾患である。
網膜の血管の増殖を招き、視力喪失を招き、最終的には網膜剥離を招き、失明を引き起こす。
近年,ディープラーニングを用いて診断を自動化する試みが盛んに行われている。
本稿では,従来のモデルの成功を基盤として,オブジェクトセグメンテーションと畳み込みニューラルネットワーク(CNN)を組み合わせた新しいアーキテクチャを開発する。
提案システムでは,まず対象分割モデルを訓練し,画素レベルでの区切り線を識別し,その結果のマスクを追加の"カラー"チャネルとして付加する。
論文 参考訳(メタデータ) (2020-04-03T14:07:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。