MambaVSR: Content-Aware Scanning State Space Model for Video Super-Resolution
- URL: http://arxiv.org/abs/2506.11768v1
- Date: Fri, 13 Jun 2025 13:22:28 GMT
- Title: MambaVSR: Content-Aware Scanning State Space Model for Video Super-Resolution
- Authors: Linfeng He, Meiqin Liu, Qi Tang, Chao Yao, Yao Zhao,
- Abstract summary: We propose MambaVSR, the first state-space model framework for super-resolution video.<n>MambaVSR enables dynamic interactions through the Shared Compass Construction ( SCC) and the Content-Aware Sequentialization (CAS)<n>Building upon, the CAS module effectively aligns and aggregates non-local similar content across multiple frames by interleaving temporal features along the learned spatial order.
- Score: 33.457410717030946
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Video super-resolution (VSR) faces critical challenges in effectively modeling non-local dependencies across misaligned frames while preserving computational efficiency. Existing VSR methods typically rely on optical flow strategies or transformer architectures, which struggle with large motion displacements and long video sequences. To address this, we propose MambaVSR, the first state-space model framework for VSR that incorporates an innovative content-aware scanning mechanism. Unlike rigid 1D sequential processing in conventional vision Mamba methods, our MambaVSR enables dynamic spatiotemporal interactions through the Shared Compass Construction (SCC) and the Content-Aware Sequentialization (CAS). Specifically, the SCC module constructs intra-frame semantic connectivity graphs via efficient sparse attention and generates adaptive spatial scanning sequences through spectral clustering. Building upon SCC, the CAS module effectively aligns and aggregates non-local similar content across multiple frames by interleaving temporal features along the learned spatial order. To bridge global dependencies with local details, the Global-Local State Space Block (GLSSB) synergistically integrates window self-attention operations with SSM-based feature propagation, enabling high-frequency detail recovery under global dependency guidance. Extensive experiments validate MambaVSR's superiority, outperforming the Transformer-based method by 0.58 dB PSNR on the REDS dataset with 55% fewer parameters.
Related papers
- MVNet: Hyperspectral Remote Sensing Image Classification Based on Hybrid Mamba-Transformer Vision Backbone Architecture [12.168520751389622]
Hyperspectral image (HSI) classification faces challenges such as high-dimensional data, limited training samples, and spectral redundancy.<n>This paper proposes a novel MVNet network architecture that integrates 3D-CNN's local feature extraction, Transformer's global modeling, and Mamba's linear sequence modeling capabilities.<n>On IN, UP, and KSC datasets, MVNet outperforms mainstream hyperspectral image classification methods in both classification accuracy and computational efficiency.
arXiv Detail & Related papers (2025-07-06T14:52:26Z) - RD-UIE: Relation-Driven State Space Modeling for Underwater Image Enhancement [59.364418120895]
Underwater image enhancement (UIE) is a critical preprocessing step for marine vision applications.<n>We develop a novel relation-driven Mamba framework for effective UIE (RD-UIE)<n>Experiments on underwater enhancement benchmarks demonstrate RD-UIE outperforms the state-of-the-art approach WMamba.
arXiv Detail & Related papers (2025-05-02T12:21:44Z) - FreSca: Scaling in Frequency Space Enhances Diffusion Models [55.75504192166779]
This paper explores frequency-based control within latent diffusion models.<n>We introduce FreSca, a novel framework that decomposes noise difference into low- and high-frequency components.<n>FreSca operates without any model retraining or architectural change, offering model- and task-agnostic control.
arXiv Detail & Related papers (2025-04-02T22:03:11Z) - RSRWKV: A Linear-Complexity 2D Attention Mechanism for Efficient Remote Sensing Vision Task [20.16344973940904]
High-resolution remote sensing analysis faces challenges due to scene complexity and scale diversity.<n>We propose RSRWKV, featuring a novel 2D-WKV scanning mechanism that bridges sequential processing and 2D spatial reasoning.
arXiv Detail & Related papers (2025-03-26T10:03:46Z) - STNMamba: Mamba-based Spatial-Temporal Normality Learning for Video Anomaly Detection [48.997518615379995]
Video anomaly detection (VAD) has been extensively researched due to its potential for intelligent video systems.<n>Most existing methods based on CNNs and transformers still suffer from substantial computational burdens.<n>We propose a lightweight and effective Mamba-based network named STNMamba to enhance the learning of spatial-temporal normality.
arXiv Detail & Related papers (2024-12-28T08:49:23Z) - Cross-Scan Mamba with Masked Training for Robust Spectral Imaging [51.557804095896174]
We propose the Cross-Scanning Mamba, named CS-Mamba, that employs a Spatial-Spectral SSM for global-local balanced context encoding.<n>Experiment results show that our CS-Mamba achieves state-of-the-art performance and the masked training method can better reconstruct smooth features to improve the visual quality.
arXiv Detail & Related papers (2024-08-01T15:14:10Z) - RSDehamba: Lightweight Vision Mamba for Remote Sensing Satellite Image Dehazing [19.89130165954241]
Remote sensing image dehazing (RSID) aims to remove nonuniform and physically irregular haze factors for high-quality image restoration.
We propose the first lightweight network on the mamba-based model called RSDhamba in the field of RSID.
arXiv Detail & Related papers (2024-05-16T12:12:07Z) - Frequency-Assisted Mamba for Remote Sensing Image Super-Resolution [49.902047563260496]
We develop the first attempt to integrate the Vision State Space Model (Mamba) for remote sensing image (RSI) super-resolution.
To achieve better SR reconstruction, building upon Mamba, we devise a Frequency-assisted Mamba framework, dubbed FMSR.
Our FMSR features a multi-level fusion architecture equipped with the Frequency Selection Module (FSM), Vision State Space Module (VSSM), and Hybrid Gate Module (HGM)
arXiv Detail & Related papers (2024-05-08T11:09:24Z) - CU-Mamba: Selective State Space Models with Channel Learning for Image Restoration [7.292363114816646]
We introduce the Channel-Aware U-Shaped Mamba model, which incorporates a dual State Space Model framework into the U-Net architecture.
Experiments validate CU-Mamba's superiority over existing state-of-the-art methods.
arXiv Detail & Related papers (2024-04-17T22:02:22Z) - Can SAM Boost Video Super-Resolution? [78.29033914169025]
We propose a simple yet effective module -- SAM-guidEd refinEment Module (SEEM)
This light-weight plug-in module is specifically designed to leverage the attention mechanism for the generation of semantic-aware feature.
We apply our SEEM to two representative methods, EDVR and BasicVSR, resulting in consistently improved performance with minimal implementation effort.
arXiv Detail & Related papers (2023-05-11T02:02:53Z) - Optical-Flow-Reuse-Based Bidirectional Recurrent Network for Space-Time
Video Super-Resolution [52.899234731501075]
Space-time video super-resolution (ST-VSR) simultaneously increases the spatial resolution and frame rate for a given video.
Existing methods typically suffer from difficulties in how to efficiently leverage information from a large range of neighboring frames.
We propose a coarse-to-fine bidirectional recurrent neural network instead of using ConvLSTM to leverage knowledge between adjacent frames.
arXiv Detail & Related papers (2021-10-13T15:21:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.