MVNet: Hyperspectral Remote Sensing Image Classification Based on Hybrid Mamba-Transformer Vision Backbone Architecture
- URL: http://arxiv.org/abs/2507.04409v1
- Date: Sun, 06 Jul 2025 14:52:26 GMT
- Title: MVNet: Hyperspectral Remote Sensing Image Classification Based on Hybrid Mamba-Transformer Vision Backbone Architecture
- Authors: Guandong Li, Mengxia Ye,
- Abstract summary: Hyperspectral image (HSI) classification faces challenges such as high-dimensional data, limited training samples, and spectral redundancy.<n>This paper proposes a novel MVNet network architecture that integrates 3D-CNN's local feature extraction, Transformer's global modeling, and Mamba's linear sequence modeling capabilities.<n>On IN, UP, and KSC datasets, MVNet outperforms mainstream hyperspectral image classification methods in both classification accuracy and computational efficiency.
- Score: 12.168520751389622
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hyperspectral image (HSI) classification faces challenges such as high-dimensional data, limited training samples, and spectral redundancy, which often lead to overfitting and insufficient generalization capability. This paper proposes a novel MVNet network architecture that integrates 3D-CNN's local feature extraction, Transformer's global modeling, and Mamba's linear complexity sequence modeling capabilities, achieving efficient spatial-spectral feature extraction and fusion. MVNet features a redesigned dual-branch Mamba module, including a State Space Model (SSM) branch and a non-SSM branch employing 1D convolution with SiLU activation, enhancing modeling of both short-range and long-range dependencies while reducing computational latency in traditional Mamba. The optimized HSI-MambaVision Mixer module overcomes the unidirectional limitation of causal convolution, capturing bidirectional spatial-spectral dependencies in a single forward pass through decoupled attention that focuses on high-value features, alleviating parameter redundancy and the curse of dimensionality. On IN, UP, and KSC datasets, MVNet outperforms mainstream hyperspectral image classification methods in both classification accuracy and computational efficiency, demonstrating robust capability in processing complex HSI data.
Related papers
- MambaVSR: Content-Aware Scanning State Space Model for Video Super-Resolution [33.457410717030946]
We propose MambaVSR, the first state-space model framework for super-resolution video.<n>MambaVSR enables dynamic interactions through the Shared Compass Construction ( SCC) and the Content-Aware Sequentialization (CAS)<n>Building upon, the CAS module effectively aligns and aggregates non-local similar content across multiple frames by interleaving temporal features along the learned spatial order.
arXiv Detail & Related papers (2025-06-13T13:22:28Z) - vGamba: Attentive State Space Bottleneck for efficient Long-range Dependencies in Visual Recognition [0.0]
State-space models (SSMs) offer an alternative, but their application in vision remains underexplored.<n>This work introduces vGamba, a hybrid vision backbone that integrates SSMs with attention mechanisms to enhance efficiency and expressiveness.<n>Tests on classification, detection, and segmentation tasks demonstrate that vGamba achieves a superior trade-off between accuracy and computational efficiency, outperforming several existing models.
arXiv Detail & Related papers (2025-03-27T08:39:58Z) - BHViT: Binarized Hybrid Vision Transformer [53.38894971164072]
Model binarization has made significant progress in enabling real-time and energy-efficient computation for convolutional neural networks (CNN)<n>We propose BHViT, a binarization-friendly hybrid ViT architecture and its full binarization model with the guidance of three important observations.<n>Our proposed algorithm achieves SOTA performance among binary ViT methods.
arXiv Detail & Related papers (2025-03-04T08:35:01Z) - Detail Matters: Mamba-Inspired Joint Unfolding Network for Snapshot Spectral Compressive Imaging [40.80197280147993]
We propose a Mamba-inspired Joint Unfolding Network (MiJUN) to overcome the inherent nonlinear and ill-posed characteristics of HSI reconstruction.<n>We introduce an accelerated unfolding network scheme, which reduces the reliance on initial optimization stages.<n>We refine the scanning strategy with Mamba by integrating the tensor mode-$k$ unfolding into the Mamba network.
arXiv Detail & Related papers (2025-01-02T13:56:23Z) - STNMamba: Mamba-based Spatial-Temporal Normality Learning for Video Anomaly Detection [48.997518615379995]
Video anomaly detection (VAD) has been extensively researched due to its potential for intelligent video systems.<n>Most existing methods based on CNNs and transformers still suffer from substantial computational burdens.<n>We propose a lightweight and effective Mamba-based network named STNMamba to enhance the learning of spatial-temporal normality.
arXiv Detail & Related papers (2024-12-28T08:49:23Z) - Cross-Scan Mamba with Masked Training for Robust Spectral Imaging [51.557804095896174]
We propose the Cross-Scanning Mamba, named CS-Mamba, that employs a Spatial-Spectral SSM for global-local balanced context encoding.<n>Experiment results show that our CS-Mamba achieves state-of-the-art performance and the masked training method can better reconstruct smooth features to improve the visual quality.
arXiv Detail & Related papers (2024-08-01T15:14:10Z) - Mamba-in-Mamba: Centralized Mamba-Cross-Scan in Tokenized Mamba Model for Hyperspectral Image Classification [4.389334324926174]
This study introduces the innovative Mamba-in-Mamba (MiM) architecture for HSI classification, the first attempt of deploying State Space Model (SSM) in this task.
MiM model includes 1) A novel centralized Mamba-Cross-Scan (MCS) mechanism for transforming images into sequence-data, 2) A Tokenized Mamba (T-Mamba) encoder, and 3) A Weighted MCS Fusion (WMF) module.
Experimental results from three public HSI datasets demonstrate that our method outperforms existing baselines and state-of-the-art approaches.
arXiv Detail & Related papers (2024-05-20T13:19:02Z) - Frequency-Assisted Mamba for Remote Sensing Image Super-Resolution [49.902047563260496]
We develop the first attempt to integrate the Vision State Space Model (Mamba) for remote sensing image (RSI) super-resolution.
To achieve better SR reconstruction, building upon Mamba, we devise a Frequency-assisted Mamba framework, dubbed FMSR.
Our FMSR features a multi-level fusion architecture equipped with the Frequency Selection Module (FSM), Vision State Space Module (VSSM), and Hybrid Gate Module (HGM)
arXiv Detail & Related papers (2024-05-08T11:09:24Z) - CU-Mamba: Selective State Space Models with Channel Learning for Image Restoration [7.292363114816646]
We introduce the Channel-Aware U-Shaped Mamba model, which incorporates a dual State Space Model framework into the U-Net architecture.
Experiments validate CU-Mamba's superiority over existing state-of-the-art methods.
arXiv Detail & Related papers (2024-04-17T22:02:22Z) - Dual Aggregation Transformer for Image Super-Resolution [92.41781921611646]
We propose a novel Transformer model, Dual Aggregation Transformer, for image SR.
Our DAT aggregates features across spatial and channel dimensions, in the inter-block and intra-block dual manner.
Our experiments show that our DAT surpasses current methods.
arXiv Detail & Related papers (2023-08-07T07:39:39Z) - Cross-Attention in Coupled Unmixing Nets for Unsupervised Hyperspectral
Super-Resolution [79.97180849505294]
We propose a novel coupled unmixing network with a cross-attention mechanism, CUCaNet, to enhance the spatial resolution of HSI.
Experiments are conducted on three widely-used HS-MS datasets in comparison with state-of-the-art HSI-SR models.
arXiv Detail & Related papers (2020-07-10T08:08:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.