SEC-bench: Automated Benchmarking of LLM Agents on Real-World Software Security Tasks
- URL: http://arxiv.org/abs/2506.11791v1
- Date: Fri, 13 Jun 2025 13:54:30 GMT
- Title: SEC-bench: Automated Benchmarking of LLM Agents on Real-World Software Security Tasks
- Authors: Hwiwon Lee, Ziqi Zhang, Hanxiao Lu, Lingming Zhang,
- Abstract summary: SEC-bench is the first fully automated benchmarking framework for evaluating large language model (LLM) agents.<n>Our framework automatically creates high-quality software vulnerability datasets with reproducible artifacts at a cost of only $0.87 per instance.<n>A comprehensive evaluation of state-of-the-art LLM code agents reveals significant performance gaps.
- Score: 11.97472024483841
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Rigorous security-focused evaluation of large language model (LLM) agents is imperative for establishing trust in their safe deployment throughout the software development lifecycle. However, existing benchmarks largely rely on synthetic challenges or simplified vulnerability datasets that fail to capture the complexity and ambiguity encountered by security engineers in practice. We introduce SEC-bench, the first fully automated benchmarking framework for evaluating LLM agents on authentic security engineering tasks. SEC-bench employs a novel multi-agent scaffold that automatically constructs code repositories with harnesses, reproduces vulnerabilities in isolated environments, and generates gold patches for reliable evaluation. Our framework automatically creates high-quality software vulnerability datasets with reproducible artifacts at a cost of only $0.87 per instance. Using SEC-bench, we implement two critical software security tasks to rigorously evaluate LLM agents' capabilities: proof-of-concept (PoC) generation and vulnerability patching. A comprehensive evaluation of state-of-the-art LLM code agents reveals significant performance gaps, achieving at most 18.0% success in PoC generation and 34.0% in vulnerability patching on our complete dataset. These results highlight the crucial steps needed toward developing LLM agents that are more practical, intelligent, and autonomous for security engineering.
Related papers
- OpenAgentSafety: A Comprehensive Framework for Evaluating Real-World AI Agent Safety [58.201189860217724]
We introduce OpenAgentSafety, a comprehensive framework for evaluating agent behavior across eight critical risk categories.<n>Unlike prior work, our framework evaluates agents that interact with real tools, including web browsers, code execution environments, file systems, bash shells, and messaging platforms.<n>It combines rule-based analysis with LLM-as-judge assessments to detect both overt and subtle unsafe behaviors.
arXiv Detail & Related papers (2025-07-08T16:18:54Z) - Are AI-Generated Fixes Secure? Analyzing LLM and Agent Patches on SWE-bench [9.229310642804036]
We present the first large-scale security analysis of LLM-generated patches using 20,000+ issues from the SWE-bench dataset.<n>We evaluate patches produced by a standalone LLM (Llama 3.3) and compare them to developer-written patches.<n>We also assess the security of patches generated by three top-performing agentic frameworks (OpenHands, AutoCodeRover, HoneyComb) on a subset of our data.
arXiv Detail & Related papers (2025-06-30T21:10:19Z) - SafeGenBench: A Benchmark Framework for Security Vulnerability Detection in LLM-Generated Code [7.209766132478914]
We introduce benchmark, a benchmark specifically designed to assess the security of LLM-generated code.<n> Building upon this benchmark, we develop an automatic evaluation framework to assess the presence of security vulnerabilities in model-generated code.<n>Our findings highlight pressing challenges and offer actionable insights for future advancements in the secure code generation performance of LLMs.
arXiv Detail & Related papers (2025-06-06T02:48:02Z) - CyberGym: Evaluating AI Agents' Cybersecurity Capabilities with Real-World Vulnerabilities at Scale [46.76144797837242]
Large language model (LLM) agents are becoming increasingly skilled at handling cybersecurity tasks autonomously.<n>Existing benchmarks fall short, often failing to capture real-world scenarios or being limited in scope.<n>We introduce CyberGym, a large-scale and high-quality cybersecurity evaluation framework featuring 1,507 real-world vulnerabilities.
arXiv Detail & Related papers (2025-06-03T07:35:14Z) - Training Language Models to Generate Quality Code with Program Analysis Feedback [66.0854002147103]
Code generation with large language models (LLMs) is increasingly adopted in production but fails to ensure code quality.<n>We propose REAL, a reinforcement learning framework that incentivizes LLMs to generate production-quality code.
arXiv Detail & Related papers (2025-05-28T17:57:47Z) - Automating Safety Enhancement for LLM-based Agents with Synthetic Risk Scenarios [77.86600052899156]
Large Language Model (LLM)-based agents are increasingly deployed in real-world applications.<n>We propose AutoSafe, the first framework that systematically enhances agent safety through fully automated synthetic data generation.<n>We show that AutoSafe boosts safety scores by 45% on average and achieves a 28.91% improvement on real-world tasks.
arXiv Detail & Related papers (2025-05-23T10:56:06Z) - The Hidden Risks of LLM-Generated Web Application Code: A Security-Centric Evaluation of Code Generation Capabilities in Large Language Models [0.769672852567215]
This paper uses predefined security parameters to evaluate the security compliance of LLM-generated code across multiple models.<n>The analysis reveals critical vulnerabilities in authentication mechanisms, session management, input validation and HTTP security headers.<n>Our findings underscore that human expertise is crucial to ensure secure software deployment or review of LLM-generated code.
arXiv Detail & Related papers (2025-04-29T10:23:11Z) - CWEval: Outcome-driven Evaluation on Functionality and Security of LLM Code Generation [20.72188827088484]
Large Language Models (LLMs) have significantly aided developers by generating or assisting in code writing.<n> detecting vulnerabilities in functionally correct code is more challenging, especially for developers with limited security knowledge.<n>We introduce CWEval, a novel outcome-driven evaluation framework designed to enhance the evaluation of secure code generation by LLMs.
arXiv Detail & Related papers (2025-01-14T15:27:01Z) - Agent-SafetyBench: Evaluating the Safety of LLM Agents [72.92604341646691]
We introduce Agent-SafetyBench, a benchmark designed to evaluate the safety of large language models (LLMs)<n>Agent-SafetyBench encompasses 349 interaction environments and 2,000 test cases, evaluating 8 categories of safety risks and covering 10 common failure modes frequently encountered in unsafe interactions.<n>Our evaluation of 16 popular LLM agents reveals a concerning result: none of the agents achieves a safety score above 60%.
arXiv Detail & Related papers (2024-12-19T02:35:15Z) - Global Challenge for Safe and Secure LLMs Track 1 [57.08717321907755]
The Global Challenge for Safe and Secure Large Language Models (LLMs) is a pioneering initiative organized by AI Singapore (AISG) and the CyberSG R&D Programme Office (CRPO)
This paper introduces the Global Challenge for Safe and Secure Large Language Models (LLMs), a pioneering initiative organized by AI Singapore (AISG) and the CyberSG R&D Programme Office (CRPO) to foster the development of advanced defense mechanisms against automated jailbreaking attacks.
arXiv Detail & Related papers (2024-11-21T08:20:31Z) - AutoPT: How Far Are We from the End2End Automated Web Penetration Testing? [54.65079443902714]
We introduce AutoPT, an automated penetration testing agent based on the principle of PSM driven by LLMs.
Our results show that AutoPT outperforms the baseline framework ReAct on the GPT-4o mini model.
arXiv Detail & Related papers (2024-11-02T13:24:30Z) - AutoSafeCoder: A Multi-Agent Framework for Securing LLM Code Generation through Static Analysis and Fuzz Testing [6.334110674473677]
Existing approaches often rely on a single agent for code generation, which struggles to produce secure, vulnerability-free code.
We propose AutoSafeCoder, a multi-agent framework that leverages LLM-driven agents for code generation, vulnerability analysis, and security enhancement through continuous collaboration.
Our contribution focuses on ensuring the safety of multi-agent code generation by integrating dynamic and static testing in an iterative process during code generation.
arXiv Detail & Related papers (2024-09-16T21:15:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.