An Explainable AI Framework for Dynamic Resource Management in Vehicular Network Slicing
- URL: http://arxiv.org/abs/2506.11882v1
- Date: Fri, 13 Jun 2025 15:32:52 GMT
- Title: An Explainable AI Framework for Dynamic Resource Management in Vehicular Network Slicing
- Authors: Haochen Sun, Yifan Liu, Ahmed Al-Tahmeesschi, Swarna Chetty, Syed Ali Raza Zaidi, Avishek Nag, Hamed Ahmadi,
- Abstract summary: This paper introduces an Explainable Deep Reinforcement Learning framework for dynamic network slicing and resource allocation in vehicular networks.<n>By integrating a feature-based approach that leverages Shapley values and an attention mechanism, we interpret and refine the decisions of our reinforcementlearning agents.
- Score: 8.69484991345861
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Effective resource management and network slicing are essential to meet the diverse service demands of vehicular networks, including Enhanced Mobile Broadband (eMBB) and Ultra-Reliable and Low-Latency Communications (URLLC). This paper introduces an Explainable Deep Reinforcement Learning (XRL) framework for dynamic network slicing and resource allocation in vehicular networks, built upon a near-real-time RAN intelligent controller. By integrating a feature-based approach that leverages Shapley values and an attention mechanism, we interpret and refine the decisions of our reinforcementlearning agents, addressing key reliability challenges in vehicular communication systems. Simulation results demonstrate that our approach provides clear, real-time insights into the resource allocation process and achieves higher interpretability precision than a pure attention mechanism. Furthermore, the Quality of Service (QoS) satisfaction for URLLC services increased from 78.0% to 80.13%, while that for eMBB services improved from 71.44% to 73.21%.
Related papers
- Task-Oriented Semantic Communication in Large Multimodal Models-based Vehicle Networks [55.32199894495722]
We investigate an LMM-based vehicle AI assistant using a Large Language and Vision Assistant (LLaVA)<n>To reduce computational demands and shorten response time, we optimize LLaVA's image slicing to selectively focus on areas of utmost interest to users.<n>We construct a Visual Question Answering (VQA) dataset for traffic scenarios to evaluate effectiveness.
arXiv Detail & Related papers (2025-05-05T07:18:47Z) - Network Resource Optimization for ML-Based UAV Condition Monitoring with Vibration Analysis [54.550658461477106]
Condition Monitoring (CM) uses Machine Learning (ML) models to identify abnormal and adverse conditions.<n>This work explores the optimization of network resources for ML-based UAV CM frameworks.<n>By leveraging dimensionality reduction techniques, there is a 99.9% reduction in network resource consumption.
arXiv Detail & Related papers (2025-02-21T14:36:12Z) - A Learning-based Incentive Mechanism for Mobile AIGC Service in Decentralized Internet of Vehicles [49.86094523878003]
We propose a decentralized incentive mechanism for mobile AIGC service allocation.
We employ multi-agent deep reinforcement learning to find the balance between the supply of AIGC services on RSUs and user demand for services within the IoV context.
arXiv Detail & Related papers (2024-03-29T12:46:07Z) - Towards Intelligent Network Management: Leveraging AI for Network
Service Detection [0.0]
This study focuses on leveraging Machine Learning methodologies to create an advanced network traffic classification system.
We introduce a novel data-driven approach that excels in identifying various network service types in real-time.
Our system demonstrates a remarkable accuracy in distinguishing the network services.
arXiv Detail & Related papers (2023-10-14T16:06:11Z) - Adaptive Resource Allocation for Virtualized Base Stations in O-RAN with Online Learning [55.08287089554127]
Open Radio Access Network systems, with their base stations (vBSs), offer operators the benefits of increased flexibility, reduced costs, vendor diversity, and interoperability.<n>We propose an online learning algorithm that balances the effective throughput and vBS energy consumption, even under unforeseeable and "challenging'' environments.<n>We prove the proposed solutions achieve sub-linear regret, providing zero average optimality gap even in challenging environments.
arXiv Detail & Related papers (2023-09-04T17:30:21Z) - Attention-based Open RAN Slice Management using Deep Reinforcement
Learning [6.177038245239758]
This paper introduces an innovative attention-based deep RL (ADRL) technique that leverages the O-RAN disaggregated modules and distributed agent cooperation.
Simulation results demonstrate significant improvements in network performance compared to other DRL baseline methods.
arXiv Detail & Related papers (2023-06-15T20:37:19Z) - Towards Decentralized Predictive Quality of Service in Next-Generation
Vehicular Networks [16.930875340427765]
We design a reinforcement learning agent to implement Predictive Quality of Service (PQoS) in vehicular networks.
Our framework is able to identify the optimal level of compression to send automotive data under low latency and reliability constraints.
arXiv Detail & Related papers (2023-02-22T10:35:00Z) - Evolutionary Deep Reinforcement Learning for Dynamic Slice Management in
O-RAN [11.464582983164991]
New open radio access network (O-RAN) with distinguishing features such as flexible design, disaggregated virtual and programmable components, and intelligent closed-loop control was developed.
O-RAN slicing is being investigated as a critical strategy for ensuring network quality of service (QoS) in the face of changing circumstances.
This paper introduces a novel framework able to manage the network slices through provisioned resources intelligently.
arXiv Detail & Related papers (2022-08-30T17:00:53Z) - CLARA: A Constrained Reinforcement Learning Based Resource Allocation
Framework for Network Slicing [19.990451009223573]
Network slicing is proposed as a promising solution for resource utilization in 5G and future networks.
We formulate the problem as a Constrained Markov Decision Process (CMDP) without knowing models and hidden structures.
We propose to solve the problem using CLARA, a Constrained reinforcement LeArning based Resource Allocation algorithm.
arXiv Detail & Related papers (2021-11-16T11:54:09Z) - Federated Learning over Wireless IoT Networks with Optimized
Communication and Resources [98.18365881575805]
Federated learning (FL) as a paradigm of collaborative learning techniques has obtained increasing research attention.
It is of interest to investigate fast responding and accurate FL schemes over wireless systems.
We show that the proposed communication-efficient federated learning framework converges at a strong linear rate.
arXiv Detail & Related papers (2021-10-22T13:25:57Z) - Optimal Power Allocation for Rate Splitting Communications with Deep
Reinforcement Learning [61.91604046990993]
This letter introduces a novel framework to optimize the power allocation for users in a Rate Splitting Multiple Access network.
In the network, messages intended for users are split into different parts that are a single common part and respective private parts.
arXiv Detail & Related papers (2021-07-01T06:32:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.