GeistBERT: Breathing Life into German NLP
- URL: http://arxiv.org/abs/2506.11903v4
- Date: Thu, 10 Jul 2025 20:40:55 GMT
- Title: GeistBERT: Breathing Life into German NLP
- Authors: Raphael Scheible-Schmitt, Johann Frei,
- Abstract summary: GeistBERT seeks to improve German language processing by incrementally training on a diverse corpus.<n>The model was trained on a 1.3 TB German corpus with dynamic masking and a fixed sequence length of 512 tokens.<n>It achieved strong results across all tasks, leading among base models and setting a new state-of-the-art (SOTA) in GermEval 2018 fine text classification.
- Score: 0.22099217573031676
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Advances in transformer-based language models have highlighted the benefits of language-specific pre-training on high-quality corpora. In this context, German NLP stands to gain from updated architectures and modern datasets tailored to the linguistic characteristics of the German language. GeistBERT seeks to improve German language processing by incrementally training on a diverse corpus and optimizing model performance across various NLP tasks. We pre-trained GeistBERT using fairseq, following the RoBERTa base configuration with Whole Word Masking (WWM), and initialized from GottBERT weights. The model was trained on a 1.3 TB German corpus with dynamic masking and a fixed sequence length of 512 tokens. For evaluation, we fine-tuned the model on standard downstream tasks, including NER (CoNLL 2003, GermEval 2014), text classification (GermEval 2018 coarse/fine, 10kGNAD), and NLI (German XNLI), using $F_1$ score and accuracy as evaluation metrics. GeistBERT achieved strong results across all tasks, leading among base models and setting a new state-of-the-art (SOTA) in GermEval 2018 fine text classification. It also outperformed several larger models, particularly in classification benchmarks. To support research in German NLP, we release GeistBERT under the MIT license.
Related papers
- Pretraining Language Models to Ponder in Continuous Space [50.52734567589996]
We introduce this pondering process into language models by repeatedly invoking the forward process within a single token generation step.<n>We show that the model can learn to ponder in this way through self-supervised learning, without any human annotations.
arXiv Detail & Related papers (2025-05-27T03:47:33Z) - Data-Efficient French Language Modeling with CamemBERTa [0.0]
We introduce CamemBERTa, a French DeBERTa model that builds upon the DeBERTaV3 architecture and training objective.
We evaluate our model's performance on a variety of French downstream tasks and datasets.
arXiv Detail & Related papers (2023-06-02T12:45:34Z) - NarrowBERT: Accelerating Masked Language Model Pretraining and Inference [50.59811343945605]
We propose NarrowBERT, a modified transformer encoder that increases the throughput for masked language model pretraining by more than $2times$.
NarrowBERT sparsifies the transformer model such that the self-attention queries and feedforward layers only operate on the masked tokens of each sentence during pretraining.
We show that NarrowBERT increases the throughput at inference time by as much as $3.5times$ with minimal (or no) performance degradation on sentence encoding tasks like MNLI.
arXiv Detail & Related papers (2023-01-11T23:45:50Z) - Pre-training Data Quality and Quantity for a Low-Resource Language: New
Corpus and BERT Models for Maltese [4.4681678689625715]
We analyse the effect of pre-training with monolingual data for a low-resource language.
We present a newly created corpus for Maltese, and determine the effect that the pre-training data size and domain have on the downstream performance.
We compare two models on the new corpus: a monolingual BERT model trained from scratch (BERTu), and a further pre-trained multilingual BERT (mBERTu)
arXiv Detail & Related papers (2022-05-21T06:44:59Z) - Russian SuperGLUE 1.1: Revising the Lessons not Learned by Russian NLP
models [53.95094814056337]
This paper presents Russian SuperGLUE 1.1, an updated benchmark styled after GLUE for Russian NLP models.
The new version includes a number of technical, user experience and methodological improvements.
We provide the integration of Russian SuperGLUE with a framework for industrial evaluation of the open-source models, MOROCCO.
arXiv Detail & Related papers (2022-02-15T23:45:30Z) - Towards Efficient NLP: A Standard Evaluation and A Strong Baseline [55.29756535335831]
This work presents ELUE (Efficient Language Understanding Evaluation), a standard evaluation, and a public leaderboard for efficient NLP models.
Along with the benchmark, we also pre-train and release a strong baseline, ElasticBERT, whose elasticity is both static and dynamic.
arXiv Detail & Related papers (2021-10-13T21:17:15Z) - FBERT: A Neural Transformer for Identifying Offensive Content [67.12838911384024]
fBERT is a BERT model retrained on SOLID, the largest English offensive language identification corpus available with over $1.4$ million offensive instances.
We evaluate fBERT's performance on identifying offensive content on multiple English datasets and we test several thresholds for selecting instances from SOLID.
The fBERT model will be made freely available to the community.
arXiv Detail & Related papers (2021-09-10T19:19:26Z) - GottBERT: a pure German Language Model [0.0]
No German single language RoBERTa model is yet published, which we introduce in this work (GottBERT)
In an evaluation we compare its performance on the two Named Entity Recognition (NER) tasks Conll 2003 and GermEval 2014 as well as on the text classification tasks GermEval 2018 (fine and coarse) and GNAD with existing German single language BERT models and two multilingual ones.
GottBERT was successfully pre-trained on a 256 core TPU pod using the RoBERTa BASE architecture.
arXiv Detail & Related papers (2020-12-03T17:45:03Z) - Explicit Alignment Objectives for Multilingual Bidirectional Encoders [111.65322283420805]
We present a new method for learning multilingual encoders, AMBER (Aligned Multilingual Bi-directional EncodeR)
AMBER is trained on additional parallel data using two explicit alignment objectives that align the multilingual representations at different granularities.
Experimental results show that AMBER obtains gains of up to 1.1 average F1 score on sequence tagging and up to 27.3 average accuracy on retrieval over the XLMR-large model.
arXiv Detail & Related papers (2020-10-15T18:34:13Z) - GREEK-BERT: The Greeks visiting Sesame Street [25.406207104603027]
Transformer-based language models, such as BERT, have achieved state-of-the-art performance in several downstream natural language processing tasks.
We present GREEK-BERT, a monolingual BERT-based language model for modern Greek.
arXiv Detail & Related papers (2020-08-27T09:36:14Z) - Pre-training Polish Transformer-based Language Models at Scale [1.0312968200748118]
We present two language models for Polish based on the popular BERT architecture.
We describe our methodology for collecting the data, preparing the corpus, and pre-training the model.
We then evaluate our models on thirteen Polish linguistic tasks, and demonstrate improvements in eleven of them.
arXiv Detail & Related papers (2020-06-07T18:48:58Z) - ParsBERT: Transformer-based Model for Persian Language Understanding [0.7646713951724012]
This paper proposes a monolingual BERT for the Persian language (ParsBERT)
It shows its state-of-the-art performance compared to other architectures and multilingual models.
ParsBERT obtains higher scores in all datasets, including existing ones as well as composed ones.
arXiv Detail & Related papers (2020-05-26T05:05:32Z) - Revisiting Pre-Trained Models for Chinese Natural Language Processing [73.65780892128389]
We revisit Chinese pre-trained language models to examine their effectiveness in a non-English language.
We also propose a model called MacBERT, which improves upon RoBERTa in several ways.
arXiv Detail & Related papers (2020-04-29T02:08:30Z) - Optimus: Organizing Sentences via Pre-trained Modeling of a Latent Space [109.79957125584252]
Variational Autoencoder (VAE) can be both a powerful generative model and an effective representation learning framework for natural language.
In this paper, we propose the first large-scale language VAE model, Optimus.
arXiv Detail & Related papers (2020-04-05T06:20:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.