Spectra-to-Structure and Structure-to-Spectra Inference Across the Periodic Table
- URL: http://arxiv.org/abs/2506.11908v1
- Date: Fri, 13 Jun 2025 15:58:05 GMT
- Title: Spectra-to-Structure and Structure-to-Spectra Inference Across the Periodic Table
- Authors: Yufeng Wang, Peiyao Wang, Lu Ma, Yuewei Lin, Qun Liu, Haibin Ling,
- Abstract summary: XAStruct is a learning framework capable of both predicting XAS spectra from crystal structures and inferring local structural descriptors from XAS input.<n>XAStruct is trained on a large-scale dataset spanning over 70 elements across the periodic table.
- Score: 60.78615287040791
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: X-ray Absorption Spectroscopy (XAS) is a powerful technique for probing local atomic environments, yet its interpretation remains limited by the need for expert-driven analysis, computationally expensive simulations, and element-specific heuristics. Recent advances in machine learning have shown promise for accelerating XAS interpretation, but many existing models are narrowly focused on specific elements, edge types, or spectral regimes. In this work, we present XAStruct, a learning framework capable of both predicting XAS spectra from crystal structures and inferring local structural descriptors from XAS input. XAStruct is trained on a large-scale dataset spanning over 70 elements across the periodic table, enabling generalization to a wide variety of chemistries and bonding environments. The model includes the first machine learning approach for predicting neighbor atom types directly from XAS spectra, as well as a unified regression model for mean nearest-neighbor distance that requires no element-specific tuning. While we explored integrating the two pipelines into a single end-to-end model, empirical results showed performance degradation. As a result, the two tasks were trained independently to ensure optimal accuracy and task-specific performance. By combining deep neural networks for complex structure-property mappings with efficient baseline models for simpler tasks, XAStruct offers a scalable and extensible solution for data-driven XAS analysis and local structure inference. The source code will be released upon paper acceptance.
Related papers
- DiffSpectra: Molecular Structure Elucidation from Spectra using Diffusion Models [66.41802970528133]
Molecular structure elucidation from spectra is a foundational problem in chemistry.<n>Traditional methods rely heavily on expert interpretation and lack scalability.<n>We present DiffSpectra, a generative framework that directly infers both 2D and 3D molecular structures from multi-modal spectral data.
arXiv Detail & Related papers (2025-07-09T13:57:20Z) - XxaCT-NN: Structure Agnostic Multimodal Learning for Materials Science [0.27185251060695437]
We propose a scalable framework that learns directly from elemental composition and X-ray diffraction (XRD)<n>Our architecture integrates modality-specific encoders with a cross-attention fusion module and is trained on the 5-million-sample Alexandria dataset.<n>Our results establish a path toward structure-free, experimentally grounded foundation models for materials science.
arXiv Detail & Related papers (2025-06-27T21:45:56Z) - Scalable Context-Preserving Model-Aware Deep Clustering for Hyperspectral Images [51.95768218975529]
Subspace clustering has become widely adopted for the unsupervised analysis of hyperspectral images (HSIs)<n>Recent model-aware deep subspace clustering methods often use a two-stage framework, involving the calculation of a self-representation matrix with complexity of O(n2), followed by spectral clustering.<n>We propose a scalable, context-preserving deep clustering method based on basis representation, which jointly captures local and non-local structures for efficient HSI clustering.
arXiv Detail & Related papers (2025-06-12T16:43:09Z) - A new framework for X-ray absorption spectroscopy data analysis based on machine learning: XASDAML [3.26781102547109]
XASDAML is a flexible, machine learning based framework that integrates the entire data-processing workflow.<n>It supports comprehensive statistical analysis, leveraging methods such as principal component analysis and clustering.<n>The versatility and effectiveness of XASDAML are exemplified by its application to a copper dataset.
arXiv Detail & Related papers (2025-02-23T17:50:04Z) - Learning Identifiable Structures Helps Avoid Bias in DNN-based Supervised Causal Learning [56.22841701016295]
Supervised Causal Learning (SCL) is an emerging paradigm in this field.<n>Existing Deep Neural Network (DNN)-based methods commonly adopt the "Node-Edge approach"
arXiv Detail & Related papers (2025-02-15T19:10:35Z) - Interpretable Multimodal Machine Learning Analysis of X-ray Absorption Near-Edge Spectra and Pair Distribution Functions [0.0]
We combine X-ray near-edge spectra (XANES) and atomic pair distribution functions (PDFs) to extract local structural and chemical environments of transition metal cations in oxides.<n>XANES-only models generally outperformed PDF-only models, even for structural tasks.
arXiv Detail & Related papers (2024-10-22T22:49:31Z) - OmniXAS: A Universal Deep-Learning Framework for Materials X-ray Absorption Spectra [0.6291443816903801]
X-ray absorption spectroscopy (XAS) is a powerful characterization technique for probing the local chemical environment of absorbing atoms.<n>We present a framework that contains a suite of transfer learning approaches for XAS prediction, each contributing to improved accuracy and efficiency.<n>Our approach boosts the throughput of XAS modeling by orders of magnitude versus first-principles simulations and is extendable to XAS prediction for a broader range of elements.
arXiv Detail & Related papers (2024-09-29T04:41:10Z) - Decoding Structure-Spectrum Relationships with Physically Organized
Latent Spaces [6.36075035468233]
A new semi-supervised machine learning method for the discovery of structure-spectrum relationships is developed and demonstrated.
This method constructs a one-to-one mapping between individual structure descriptors and spectral trends.
The RankAAE methodology produces a continuous and interpretable latent space, where each dimension can track an individual structure descriptor.
arXiv Detail & Related papers (2023-01-11T21:30:22Z) - Interpretable Mixture of Experts [71.55701784196253]
Interpretable Mixture of Experts (IME) is an inherently-interpretable modeling framework.
IME is demonstrated to be more accurate than single interpretable models and perform comparably with existing state-of-the-art Deep Neural Networks (DNNs) in accuracy.
IME's explanations are compared to commonly-used post-hoc explanations methods through a user study.
arXiv Detail & Related papers (2022-06-05T06:40:15Z) - X2Parser: Cross-Lingual and Cross-Domain Framework for Task-Oriented
Compositional Semantic Parsing [51.81533991497547]
Task-oriented compositional semantic parsing (TCSP) handles complex nested user queries.
We present X2 compared a transferable Cross-lingual and Cross-domain for TCSP.
We propose to predict flattened intents and slots representations separately and cast both prediction tasks into sequence labeling problems.
arXiv Detail & Related papers (2021-06-07T16:40:05Z) - Adaptive Linear Span Network for Object Skeleton Detection [56.78705071830965]
We propose adaptive linear span network (AdaLSN) to automatically configure and integrate scale-aware features for object skeleton detection.
AdaLSN substantiates its versatility by achieving significantly higher accuracy and latency trade-off.
It also demonstrates general applicability to image-to-mask tasks such as edge detection and road extraction.
arXiv Detail & Related papers (2020-11-08T12:51:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.