論文の概要: O2Former:Direction-Aware and Multi-Scale Query Enhancement for SAR Ship Instance Segmentation
- arxiv url: http://arxiv.org/abs/2506.11913v1
- Date: Fri, 13 Jun 2025 16:06:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-16 17:50:49.870239
- Title: O2Former:Direction-Aware and Multi-Scale Query Enhancement for SAR Ship Instance Segmentation
- Title(参考訳): O2Former:SARシークレットインスタンスセグメンテーションのための方向認識とマルチスケールクエリ拡張
- Authors: F. Gao, Y Li, X He, J Sun, J Wang,
- Abstract要約: 合成開口レーダ(SAR)画像における船舶の船体セグメンテーションは、海上監視、環境分析、国家安全保障などの用途において重要である。
SAR船体画像は、スケール変動、物体密度、ファジィターゲット境界などの課題を示す。
我々は,SAR画像の構造的特徴を十分に活用して,Mask2Formerを拡張したカスタマイズされたインスタンスセグメンテーションフレームワークであるO2Formerを提案する。
- 参考スコア(独自算出の注目度): 0.3611754783778107
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Instance segmentation of ships in synthetic aperture radar (SAR) imagery is critical for applications such as maritime monitoring, environmental analysis, and national security. SAR ship images present challenges including scale variation, object density, and fuzzy target boundary, which are often overlooked in existing methods, leading to suboptimal performance. In this work, we propose O2Former, a tailored instance segmentation framework that extends Mask2Former by fully leveraging the structural characteristics of SAR imagery. We introduce two key components. The first is the Optimized Query Generator(OQG). It enables multi-scale feature interaction by jointly encoding shallow positional cues and high-level semantic information. This improves query quality and convergence efficiency. The second component is the Orientation-Aware Embedding Module(OAEM). It enhances directional sensitivity through direction-aware convolution and polar-coordinate encoding. This effectively addresses the challenge of uneven target orientations in SAR scenes. Together, these modules facilitate precise feature alignment from backbone to decoder and strengthen the model's capacity to capture fine-grained structural details. Extensive experiments demonstrate that O2Former outperforms state of the art instance segmentation baselines, validating its effectiveness and generalization on SAR ship datasets.
- Abstract(参考訳): 合成開口レーダ(SAR)画像における船舶の船体セグメンテーションは、海上監視、環境分析、国家安全保障などの用途において重要である。
SARの船体画像は、スケールの変動、オブジェクト密度、ファジィターゲット境界などの課題を示しており、これはしばしば既存の手法で見落とされ、亜最適性能をもたらす。
本研究では,SAR画像の構造的特徴を十分に活用して,Mask2Formerを拡張したカスタマイズされたインスタンスセグメンテーションフレームワークであるO2Formerを提案する。
2つの重要なコンポーネントを紹介します。
1つ目はOptimized Query Generator (OQG)である。
浅い位置の手がかりと高レベルの意味情報を共同で符号化することで、マルチスケールな特徴間相互作用を可能にする。
これによりクエリ品質と収束効率が向上する。
第2のコンポーネントは Orientation-Aware Embedding Module (OAEM) である。
方向認識の畳み込みと極座標符号化による方向感度を高める。
これは、SARシーンにおける不均一な目標方向の課題に効果的に対処する。
これらのモジュールは、バックボーンからデコーダへの正確な特徴アライメントを促進し、モデルのキャパシティを強化し、きめ細かい構造の詳細をキャプチャする。
大規模な実験により、O2Formerは最先端のインスタンスセグメンテーションベースラインを上回っ、SAR船のデータセットの有効性と一般化を検証した。
関連論文リスト
- CFMD: Dynamic Cross-layer Feature Fusion for Salient Object Detection [7.262250906929891]
クロス層機能ピラミッドネットワーク(CFPN)は,多層機能融合と境界詳細保存において顕著な進歩を遂げている。
これらの課題に対処するために,CFMDという,2つの重要なイノベーションを取り入れた,新しいクロスレイヤ機能ピラミッドネットワークを提案する。
まず,現在最先端のMambaアーキテクチャを組み込んで動的重み分布機構を構築するコンテキスト認識機能集約モジュール(CFLMA)を設計する。
第2に,分解能回復時に空間的詳細を保存する適応動的アップサンプリングユニット(CFLMD)を導入する。
論文 参考訳(メタデータ) (2025-04-02T03:22:36Z) - FUSE: Label-Free Image-Event Joint Monocular Depth Estimation via Frequency-Decoupled Alignment and Degradation-Robust Fusion [63.87313550399871]
画像強調共同深度推定法は、頑健な知覚に相補的なモダリティを利用するが、一般化可能性の課題に直面している。
自己監督型転送(PST)と周波数デカップリング型フュージョンモジュール(FreDF)を提案する。
PSTは、画像基礎モデルと潜在空間アライメントによるクロスモーダルな知識伝達を確立する。
FreDFは、低周波構造成分から高周波エッジ特性を明示的に分離し、モード比周波数ミスマッチを解消する。
論文 参考訳(メタデータ) (2025-03-25T15:04:53Z) - Cross-Modal Bidirectional Interaction Model for Referring Remote Sensing Image Segmentation [50.433911327489554]
リモートセンシング画像セグメンテーション(RRSIS)の目標は、参照式によって識別された対象オブジェクトの画素レベルマスクを生成することである。
上記の課題に対処するため、クロスモーダル双方向相互作用モデル(CroBIM)と呼ばれる新しいRRSISフレームワークが提案されている。
RRSISの研究をさらに推し進めるために、52,472個の画像言語ラベル三重項からなる新しい大規模ベンチマークデータセットRISBenchを構築した。
論文 参考訳(メタデータ) (2024-10-11T08:28:04Z) - Embracing Events and Frames with Hierarchical Feature Refinement Network for Object Detection [17.406051477690134]
イベントカメラはスパースと非同期のイベントを出力し、これらの問題を解決する潜在的な解決策を提供する。
イベントフレーム融合のための新しい階層的特徴改善ネットワークを提案する。
本手法は, フレーム画像に15種類の汚損タイプを導入する際に, 極めて優れたロバスト性を示す。
論文 参考訳(メタデータ) (2024-07-17T14:09:46Z) - GRA: Detecting Oriented Objects through Group-wise Rotating and Attention [64.21917568525764]
GRA(Group-wise Rotating and Attention)モジュールは、オブジェクト指向オブジェクト検出のためのバックボーンネットワークにおける畳み込み操作を置き換えるために提案されている。
GRAは、グループワイド回転(Group-wise Rotating)とグループワイド注意(Group-wise Attention)という2つの重要なコンポーネントを含む、さまざまな向きのオブジェクトのきめ細かい特徴を適応的にキャプチャすることができる。
GRAはDOTA-v2.0ベンチマークで新しい最先端(SOTA)を実現し、以前のSOTA法と比較してパラメータを50%近く削減した。
論文 参考訳(メタデータ) (2024-03-17T07:29:32Z) - Rotated Multi-Scale Interaction Network for Referring Remote Sensing Image Segmentation [63.15257949821558]
Referring Remote Sensing Image (RRSIS)は、コンピュータビジョンと自然言語処理を組み合わせた新しい課題である。
従来の参照画像(RIS)アプローチは、空中画像に見られる複雑な空間スケールと向きによって妨げられている。
本稿ではRMSIN(Rotated Multi-Scale Interaction Network)を紹介する。
論文 参考訳(メタデータ) (2023-12-19T08:14:14Z) - A Mask Attention Interaction and Scale Enhancement Network for SAR Ship
Instance Segmentation [4.232332676611087]
本稿では,SAR船のインスタンスセグメンテーションのためのマスクアテンションインタラクションとスケールエンハンスメントネットワーク(MAI-SE-Net)を提案する。
MAIは、アトラス空間ピラミドプーリング(ASPP)を用いてマルチレゾリューション機能を再応答し、非局所ブロック(NLB)で長距離空間依存性をモデル化し、結合シャッフルアテンションブロック(CSAB)で相互作用の利点を向上させる。
論文 参考訳(メタデータ) (2022-07-08T14:04:04Z) - Dense Attention Fluid Network for Salient Object Detection in Optical
Remote Sensing Images [193.77450545067967]
光リモートセンシング画像(RSI)における有意物体検出のためのエンド・ツー・エンドDense Attention Fluid Network(DAFNet)を提案する。
GCA(Global Context-Aware Attention)モジュールは、長距離の意味的関係を適応的にキャプチャするために提案される。
我々は、2000枚の画像とピクセルワイドなサリエンシアノテーションを含むSODのための新しい、挑戦的な光学RSIデータセットを構築した。
論文 参考訳(メタデータ) (2020-11-26T06:14:10Z) - Align Deep Features for Oriented Object Detection [40.28244152216309]
本稿では、FAM(Feature Alignment Module)とODM(Oriented Detection Module)の2つのモジュールからなる単発アライメントネットワーク(S$2$A-Net)を提案する。
FAMは、アンカー・リファインメント・ネットワークで高品質なアンカーを生成し、アンカーボックスに応じた畳み込み特徴と、新しいアライメント・コンボリューション・コンボリューションとを適応的に調整することができる。
ODMは、まず、向き情報を符号化するためにアクティブな回転フィルタを採用し、次に、分類スコアとローカライゼーション精度の不整合を軽減するために、向きに敏感で方向不変な特徴を生成する。
論文 参考訳(メタデータ) (2020-08-21T09:55:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。