論文の概要: Multi-domain anomaly detection in a 5G network
- arxiv url: http://arxiv.org/abs/2506.12070v1
- Date: Wed, 04 Jun 2025 07:40:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-22 23:32:14.62157
- Title: Multi-domain anomaly detection in a 5G network
- Title(参考訳): 5Gネットワークにおけるマルチドメイン異常検出
- Authors: Thomas Hoger, Philippe Owezarski,
- Abstract要約: 本稿では,3次元の交通相関によるマルチドメイン異常検出手法を提案する。
これらの領域を独立して考えるのに限られる従来のアプローチとは異なり、我々の手法はそれらの相関を研究して、グローバルで一貫性があり、説明可能な異常の見解を得る。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the advent of 5G, mobile networks are becoming more dynamic and will therefore present a wider attack surface. To secure these new systems, we propose a multi-domain anomaly detection method that is distinguished by the study of traffic correlation on three dimensions: temporal by analyzing message sequences, semantic by abstracting the parameters these messages contain, and topological by linking them in the form of a graph. Unlike traditional approaches, which are limited to considering these domains independently, our method studies their correlations to obtain a global, coherent and explainable view of anomalies.
- Abstract(参考訳): 5Gの出現により、モバイルネットワークはよりダイナミックになり、それによってより広い攻撃面が現れる。
これらの新しいシステムを確保するために,メッセージシーケンスの解析による時間的相関,メッセージに含まれるパラメータを抽象化した意味,グラフの形でそれらをリンクするトポロジといった3次元のトラフィック相関から区別されるマルチドメイン異常検出手法を提案する。
これらの領域を独立して考えるのに限られる従来のアプローチとは異なり、我々の手法はそれらの相関を研究して、グローバルで一貫性があり、説明可能な異常の見解を得る。
関連論文リスト
- Explaining Anomalies with Tensor Networks [0.0]
本稿では,説明可能な異常検出のためのツリーテンソルネットワークを提案する。
いくつかのベースラインモデルと比較して,適切な予測性能を示す。
これにより、より広範な潜在的な問題にテンソルネットワークの適用を拡大する。
論文 参考訳(メタデータ) (2025-05-06T18:35:05Z) - CICADA: Cross-Domain Interpretable Coding for Anomaly Detection and Adaptation in Multivariate Time Series [24.307819352969037]
CICADA(Cross-domain Interpretable Coding for Anomaly Detection and Adaptation)を4つの重要なイノベーションとともに紹介する。
CICADAは、高い柔軟性と解釈可能性を備えたドメインに依存しない異常特徴をキャプチャする。
合成および実世界の産業データセットに関する試行は、CICADAがクロスドメイン検出性能と解釈可能性の両方において最先端の手法より優れていることを示した。
論文 参考訳(メタデータ) (2025-05-01T09:26:40Z) - Out-of-Distribution Detection on Graphs: A Survey [58.47395497985277]
グラフアウト・オブ・ディストリビューション(GOOD)検出は、トレーニング中に見られる分布から逸脱するグラフデータを特定することに焦点を当てる。
既存の手法を,拡張ベース,再構築ベース,情報伝達ベース,分類ベースという4つのタイプに分類する。
本稿では,グラフデータによるユニークな課題を浮き彫りにして,実践的応用と理論的基礎について論じる。
論文 参考訳(メタデータ) (2025-02-12T04:07:12Z) - Fundamental limits of community detection from multi-view data:
multi-layer, dynamic and partially labeled block models [7.778975741303385]
現代のネットワーク分析におけるマルチビューデータのコミュニティ検出について検討する。
我々は,データと潜在パラメータ間の相互情報を特徴付ける。
コミュニティ検出のための近似メッセージパッシングに基づく反復アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-01-16T07:13:32Z) - Over-Squashing in Graph Neural Networks: A Comprehensive survey [0.0]
この調査は、グラフニューラルネットワーク(GNN)におけるオーバースカッシングの課題を掘り下げるものだ。
オーバースカッシングの原因、結果、緩和戦略を包括的に探求する。
グラフの書き換え、新しい正規化、スペクトル分析、曲率に基づく戦略など、様々な手法がレビューされている。
また、オーバー・スムーシングなど、オーバー・スカッシングと他のGNN制限との相互作用についても論じている。
論文 参考訳(メタデータ) (2023-08-29T18:46:15Z) - Cross-Domain Policy Adaptation via Value-Guided Data Filtering [57.62692881606099]
動的ミスマッチで異なるドメインにまたがるポリシーを一般化することは、強化学習において重要な課題となる。
本稿では、ペア化された値ターゲットの近接に基づいて、ソースドメインからの遷移を選択的に共有するバリューガイドデータフィルタリング(VGDF)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-05-28T04:08:40Z) - Relation Matters: Foreground-aware Graph-based Relational Reasoning for
Domain Adaptive Object Detection [81.07378219410182]
我々は、FGRR(Fearground-aware Graph-based Reasoning)というドメインDのための新しい汎用フレームワークを提案する。
FGRRはグラフ構造を検出パイプラインに組み込んで、ドメイン内およびドメイン間フォアグラウンドオブジェクト関係を明示的にモデル化する。
実験の結果、提案したFGRRは4つのDomainDベンチマークの最先端よりも優れていることが示された。
論文 参考訳(メタデータ) (2022-06-06T05:12:48Z) - Unsupervised Abnormal Traffic Detection through Topological Flow
Analysis [1.933681537640272]
悪意のある流れの トポロジカル接続コンポーネントは 利用されていない
本稿では,教師なし異常検出アルゴリズムにおける接続グラフ機能の利用を容易にするための簡易な手法を提案する。
論文 参考訳(メタデータ) (2022-05-14T18:52:49Z) - Spatio-Temporal Joint Graph Convolutional Networks for Traffic
Forecasting [75.10017445699532]
近年、時間グラフモデリング問題として交通予測の定式化に焦点が移っている。
本稿では,道路網における交通予測の精度向上のための新しい手法を提案する。
論文 参考訳(メタデータ) (2021-11-25T08:45:14Z) - F-FADE: Frequency Factorization for Anomaly Detection in Edge Streams [53.70940420595329]
エッジストリームにおける異常検出のための新しいアプローチであるF-FADEを提案する。
ノード対間の相互作用の周波数の時間進化分布を効率的にモデル化するために、新しい周波数分解技術を用いる。
F-FADEは、一定メモリしか必要とせず、時間的および構造的な変化を伴う幅広い種類の異常をオンラインストリーミング環境で処理できる。
論文 参考訳(メタデータ) (2020-11-09T19:55:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。