Explaining Recovery Trajectories of Older Adults Post Lower-Limb Fracture Using Modality-wise Multiview Clustering and Large Language Models
- URL: http://arxiv.org/abs/2506.12156v1
- Date: Fri, 13 Jun 2025 18:19:28 GMT
- Title: Explaining Recovery Trajectories of Older Adults Post Lower-Limb Fracture Using Modality-wise Multiview Clustering and Large Language Models
- Authors: Shehroz S. Khan, Ali Abedi, Charlene H. Chu,
- Abstract summary: This paper addresses the problem of interpreting clustered sensor data collected from older adult patients recovering from lower-limb fractures in the community.<n>A total of 560 days of multimodal sensor data, including acceleration, step count, ambient motion, GPS location, heart rate, and sleep, were remotely collected from patients at home.<n>A large language model was employed to infer meaningful cluster labels for the clusters derived from each modality.
- Score: 2.166000001057538
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Interpreting large volumes of high-dimensional, unlabeled data in a manner that is comprehensible to humans remains a significant challenge across various domains. In unsupervised healthcare data analysis, interpreting clustered data can offer meaningful insights into patients' health outcomes, which hold direct implications for healthcare providers. This paper addresses the problem of interpreting clustered sensor data collected from older adult patients recovering from lower-limb fractures in the community. A total of 560 days of multimodal sensor data, including acceleration, step count, ambient motion, GPS location, heart rate, and sleep, alongside clinical scores, were remotely collected from patients at home. Clustering was first carried out separately for each data modality to assess the impact of feature sets extracted from each modality on patients' recovery trajectories. Then, using context-aware prompting, a large language model was employed to infer meaningful cluster labels for the clusters derived from each modality. The quality of these clusters and their corresponding labels was validated through rigorous statistical testing and visualization against clinical scores collected alongside the multimodal sensor data. The results demonstrated the statistical significance of most modality-specific cluster labels generated by the large language model with respect to clinical scores, confirming the efficacy of the proposed method for interpreting sensor data in an unsupervised manner. This unsupervised data analysis approach, relying solely on sensor data, enables clinicians to identify at-risk patients and take timely measures to improve health outcomes.
Related papers
- Unsupervised Clustering Approaches for Autism Screening: Achieving 95.31% Accuracy with a Gaussian Mixture Model [0.0]
Autism spectrum disorder (ASD) remains a challenging condition to diagnose effectively and promptly.<n>Traditional diagnostic methods presuppose the availability of labeled data, which can be both time-consuming and resource-intensive to obtain.<n>This paper explores the use of four distinct unsupervised clustering algorithms to analyze a publicly available dataset of 704 adult individuals screened for ASD.
arXiv Detail & Related papers (2025-02-20T18:12:59Z) - From Classification to Clinical Insights: Towards Analyzing and Reasoning About Mobile and Behavioral Health Data With Large Language Models [21.427976533706737]
We take a novel approach that leverages large language models to synthesize clinically useful insights from multi-sensor data.
We develop chain of thought prompting methods that use LLMs to generate reasoning about how trends in data relate to conditions like depression and anxiety.
We find models like GPT-4 correctly reference numerical data 75% of the time, and clinician participants express strong interest in using this approach to interpret self-tracking data.
arXiv Detail & Related papers (2023-11-21T23:53:27Z) - Multi-task Explainable Skin Lesion Classification [54.76511683427566]
We propose a few-shot-based approach for skin lesions that generalizes well with few labelled data.
The proposed approach comprises a fusion of a segmentation network that acts as an attention module and classification network.
arXiv Detail & Related papers (2023-10-11T05:49:47Z) - Contrastive learning for unsupervised medical image clustering and
reconstruction [0.23624125155742057]
We propose an unsupervised autoencoder framework which is augmented with a contrastive loss to encourage high separability in the latent space.
Our method achieves similar performance to the supervised architecture, indicating that separation in the latent space reproduces expert medical observer-assigned labels.
arXiv Detail & Related papers (2022-09-24T13:17:02Z) - Enabling scalable clinical interpretation of ML-based phenotypes using
real world data [0.0]
This study investigates approaches to perform patient stratification analysis at scale using large EHR datasets.
We have developed several tools to facilitate the clinical evaluation and interpretation of unsupervised patient stratification results.
arXiv Detail & Related papers (2022-08-02T17:31:03Z) - Deep Semi-Supervised Embedded Clustering (DSEC) for Stratification of
Heart Failure Patients [50.48904066814385]
In this work we apply deep semi-supervised embedded clustering to determine data-driven patient subgroups of heart failure.
We find clinically relevant clusters from an embedded space derived from heterogeneous data.
The proposed algorithm can potentially find new undiagnosed subgroups of patients that have different outcomes.
arXiv Detail & Related papers (2020-12-24T12:56:46Z) - Trajectories, bifurcations and pseudotime in large clinical datasets:
applications to myocardial infarction and diabetes data [94.37521840642141]
We suggest a semi-supervised methodology for the analysis of large clinical datasets, characterized by mixed data types and missing values.
The methodology is based on application of elastic principal graphs which can address simultaneously the tasks of dimensionality reduction, data visualization, clustering, feature selection and quantifying the geodesic distances (pseudotime) in partially ordered sequences of observations.
arXiv Detail & Related papers (2020-07-07T21:04:55Z) - Temporal Phenotyping using Deep Predictive Clustering of Disease
Progression [97.88605060346455]
We develop a deep learning approach for clustering time-series data, where each cluster comprises patients who share similar future outcomes of interest.
Experiments on two real-world datasets show that our model achieves superior clustering performance over state-of-the-art benchmarks.
arXiv Detail & Related papers (2020-06-15T20:48:43Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
We present a relation-driven semi-supervised framework for medical image classification.
It exploits the unlabeled data by encouraging the prediction consistency of given input under perturbations.
Our method outperforms many state-of-the-art semi-supervised learning methods on both single-label and multi-label image classification scenarios.
arXiv Detail & Related papers (2020-05-15T06:57:54Z) - Predictive Modeling of ICU Healthcare-Associated Infections from
Imbalanced Data. Using Ensembles and a Clustering-Based Undersampling
Approach [55.41644538483948]
This work is focused on both the identification of risk factors and the prediction of healthcare-associated infections in intensive-care units.
The aim is to support decision making addressed at reducing the incidence rate of infections.
arXiv Detail & Related papers (2020-05-07T16:13:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.