論文の概要: Private Continuous-Time Synthetic Trajectory Generation via Mean-Field Langevin Dynamics
- arxiv url: http://arxiv.org/abs/2506.12203v1
- Date: Fri, 13 Jun 2025 20:13:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-17 17:28:45.402619
- Title: Private Continuous-Time Synthetic Trajectory Generation via Mean-Field Langevin Dynamics
- Title(参考訳): 平均場ランゲヴィンダイナミクスによるプライベート連続時間合成軌道生成
- Authors: Anming Gu, Edward Chien, Kristjan Greenewald,
- Abstract要約: トラジェクトリ推論と連続時間合成データ生成の接続を利用する。
我々は手書きMNISTデータの合成変動に基づいて現実的な軌跡を生成する実験を行った。
- 参考スコア(独自算出の注目度): 2.7255073299359154
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We provide an algorithm to privately generate continuous-time data (e.g. marginals from stochastic differential equations), which has applications in highly sensitive domains involving time-series data such as healthcare. We leverage the connections between trajectory inference and continuous-time synthetic data generation, along with a computational method based on mean-field Langevin dynamics. As discretized mean-field Langevin dynamics and noisy particle gradient descent are equivalent, DP results for noisy SGD can be applied to our setting. We provide experiments that generate realistic trajectories on a synthesized variation of hand-drawn MNIST data while maintaining meaningful privacy guarantees. Crucially, our method has strong utility guarantees under the setting where each person contributes data for \emph{only one time point}, while prior methods require each person to contribute their \emph{entire temporal trajectory}--directly improving the privacy characteristics by construction.
- Abstract(参考訳): 医療などの時系列データを含む高感度領域に適用可能な,連続時間データ(例えば確率微分方程式の限界値)をプライベートに生成するアルゴリズムを提供する。
我々は、平均場ランゲヴィンダイナミクスに基づく計算手法とともに、軌道推定と連続時間合成データ生成の接続を利用する。
離散化平均場ランゲヴィンダイナミクスとノイズ粒子勾配勾配は等価であるので、ノイズSGDのDP結果を適用することができる。
我々は,手書きMNISTデータの合成変動に対して,意味のあるプライバシー保証を維持しつつ,現実的な軌跡を生成する実験を行った。
重要な点として,本手法は,各人が1つの時点にのみデータをコントリビュートする,という設定の下で有効性を保証する一方で,事前の手法では,各人物に対して,構築によるプライバシー特性の直接的改善を要求される。
関連論文リスト
- Multivariate Long-term Time Series Forecasting with Fourier Neural Filter [55.09326865401653]
我々はFNFをバックボーンとして、DBDをアーキテクチャとして導入し、空間時間モデルのための優れた学習能力と最適な学習経路を提供する。
FNFは、局所時間領域とグローバル周波数領域の情報処理を単一のバックボーン内で統合し、空間的モデリングに自然に拡張することを示す。
論文 参考訳(メタデータ) (2025-06-10T18:40:20Z) - Linear-Time User-Level DP-SCO via Robust Statistics [55.350093142673316]
ユーザレベルの差分プライベート凸最適化(DP-SCO)は、マシンラーニングアプリケーションにおけるユーザのプライバシ保護の重要性から、大きな注目を集めている。
微分プライベート勾配勾配(DP-SGD)に基づくような現在の手法は、しばしば高雑音蓄積と準最適利用に苦しむ。
これらの課題を克服するために、ロバストな統計、特に中央値とトリミング平均を利用する新しい線形時間アルゴリズムを導入する。
論文 参考訳(メタデータ) (2025-02-13T02:05:45Z) - Differentially Private Spatiotemporal Trajectory Synthesis with Retained Data Utility [0.3277163122167433]
DP-STTSは差分プライベートシンセサイザーである。
ノイズモデルから合成軌道を生成する。
実験では、DP-STTSが優れたデータユーティリティを提供することを示す。
論文 参考訳(メタデータ) (2024-08-23T05:17:36Z) - Distributed Stochastic Gradient Descent with Staleness: A Stochastic Delay Differential Equation Based Framework [56.82432591933544]
分散勾配降下(SGD)は、計算リソースのスケーリング、トレーニング時間の短縮、マシンラーニングにおけるユーザのプライバシ保護の支援などにより、近年注目されている。
本稿では,遅延微分方程式(SDDE)と勾配到着の近似に基づく分散SGDの実行時間と安定化について述べる。
活性化作業員の増加は, 安定度による分散SGDを必ずしも加速させるものではないことが興味深い。
論文 参考訳(メタデータ) (2024-06-17T02:56:55Z) - ST-DPGAN: A Privacy-preserving Framework for Spatiotemporal Data Generation [19.18074489351738]
プライバシー保護データを生成するグラフモデルを提案する。
3つの実時間データセットを用いて実験を行い,本モデルの有効性を検証した。
生成されたデータに基づいてトレーニングされた予測モデルは、元のデータでトレーニングされたモデルと比較して、競争力のあるエッジを維持している。
論文 参考訳(メタデータ) (2024-06-04T04:43:54Z) - Temporal and Heterogeneous Graph Neural Network for Remaining Useful Life Prediction [27.521188262343596]
我々はTHGNN(Temporal and Heterogeneous Graph Neural Networks)という新しいモデルを導入する。
THGNNは、隣接するノードからの履歴データを集約し、センサーデータのストリーム内の時間的ダイナミクスと空間的相関を正確にキャプチャする。
包括的実験により,本手法の有効性を検証した。
論文 参考訳(メタデータ) (2024-05-07T14:08:57Z) - Synthetic location trajectory generation using categorical diffusion
models [50.809683239937584]
拡散モデル(DPM)は急速に進化し、合成データのシミュレーションにおける主要な生成モデルの一つとなっている。
本稿では,個人が訪れた物理的位置を表す変数列である合成個別位置軌跡(ILT)の生成にDPMを用いることを提案する。
論文 参考訳(メタデータ) (2024-02-19T15:57:39Z) - Manifold Interpolating Optimal-Transport Flows for Trajectory Inference [64.94020639760026]
最適輸送流(MIOFlow)を補間するマニフォールド補間法を提案する。
MIOFlowは、散発的なタイムポイントで撮影された静的スナップショットサンプルから、連続的な人口動態を学習する。
本手法は, 胚体分化および急性骨髄性白血病の治療から得られたscRNA-seqデータとともに, 分岐とマージによるシミュレーションデータについて検討した。
論文 参考訳(メタデータ) (2022-06-29T22:19:03Z) - Conditional Sig-Wasserstein GANs for Time Series Generation [8.593063679921109]
GAN(Generative Adversarial Network)は、高次元の確率測度からサンプルを生成するのに非常に成功した。
これらの手法は時系列データによって誘導される関節確率分布の時間的依存を捉えるのに苦労する。
時系列データストリームはターゲット空間の次元を大幅に増加させ、生成的モデリングが不可能になる可能性がある。
本稿では,Wasserstein-GANを数学的原理と効率的な経路特徴抽出と統合した汎用条件付きSig-WGANフレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-09T17:38:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。