Learning Causality for Modern Machine Learning
- URL: http://arxiv.org/abs/2506.12226v1
- Date: Fri, 13 Jun 2025 21:03:49 GMT
- Title: Learning Causality for Modern Machine Learning
- Authors: Yongqiang Chen,
- Abstract summary: In the past decades, machine learning with Empirical Risk Minimization has demonstrated great capability in learning.<n>ERM avoids the modeling of causality the way of understanding and handling changes.<n>In this thesis, we investigate how to incorporate and realize the causality for broader tasks in modern machine learning.
- Score: 2.093689302081589
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In the past decades, machine learning with Empirical Risk Minimization (ERM) has demonstrated great capability in learning and exploiting the statistical patterns from data, or even surpassing humans. Despite the success, ERM avoids the modeling of causality the way of understanding and handling changes, which is fundamental to human intelligence. When deploying models beyond the training environment, distribution shifts are everywhere. For example, an autopilot system often needs to deal with new weather conditions that have not been seen during training, An Al-aided drug discovery system needs to predict the biochemical properties of molecules with respect to new viruses such as COVID-19. It renders the problem of Out-of-Distribution (OOD) generalization challenging to conventional machine learning. In this thesis, we investigate how to incorporate and realize the causality for broader tasks in modern machine learning. In particular, we exploit the invariance implied by the principle of independent causal mechanisms (ICM), that is, the causal mechanisms generating the effects from causes do not inform or influence each other. Therefore, the conditional distribution between the target variable given its causes is invariant under distribution shifts. With the causal invariance principle, we first instantiate it to graphs -- a general data structure ubiquitous in many real-world industry and scientific applications, such as financial networks and molecules. Then, we shall see how learning the causality benefits many of the desirable properties of modern machine learning, in terms of (i) OOD generalization capability; (ii) interpretability; and (iii) robustness to adversarial attacks. Realizing the causality in machine learning, on the other hand, raises a dilemma for optimization in conventional machine learning, as it often contradicts the objective of ERM...
Related papers
- Mechanism learning: Reverse causal inference in the presence of multiple unknown confounding through front-door causal bootstrapping [0.8901073744693314]
A major limitation of machine learning (ML) prediction models is that they recover associational, rather than causal, predictive relationships between variables.
This paper proposes mechanism learning, a simple method which uses front-door causal bootstrapping to deconfound observational data.
We test our method on fully synthetic, semi-synthetic and real-world datasets, demonstrating that it can discover reliable, unbiased, causal ML predictors.
arXiv Detail & Related papers (2024-10-26T03:34:55Z) - Ecosystem-level Analysis of Deployed Machine Learning Reveals Homogeneous Outcomes [72.13373216644021]
We study the societal impact of machine learning by considering the collection of models that are deployed in a given context.
We find deployed machine learning is prone to systemic failure, meaning some users are exclusively misclassified by all models available.
These examples demonstrate ecosystem-level analysis has unique strengths for characterizing the societal impact of machine learning.
arXiv Detail & Related papers (2023-07-12T01:11:52Z) - A Causal Framework for Decomposing Spurious Variations [68.12191782657437]
We develop tools for decomposing spurious variations in Markovian and Semi-Markovian models.
We prove the first results that allow a non-parametric decomposition of spurious effects.
The described approach has several applications, ranging from explainable and fair AI to questions in epidemiology and medicine.
arXiv Detail & Related papers (2023-06-08T09:40:28Z) - Pessimism meets VCG: Learning Dynamic Mechanism Design via Offline
Reinforcement Learning [114.36124979578896]
We design a dynamic mechanism using offline reinforcement learning algorithms.
Our algorithm is based on the pessimism principle and only requires a mild assumption on the coverage of the offline data set.
arXiv Detail & Related papers (2022-05-05T05:44:26Z) - The worst of both worlds: A comparative analysis of errors in learning
from data in psychology and machine learning [17.336655978572583]
Recent concerns that machine learning (ML) may be facing a misdiagnosis and replication crisis suggest that some published claims in ML research cannot be taken at face value.
A deeper understanding of what concerns in research in supervised ML have in common with the replication crisis in experimental science can put the new concerns in perspective.
arXiv Detail & Related papers (2022-03-12T18:26:24Z) - Systematic Evaluation of Causal Discovery in Visual Model Based
Reinforcement Learning [76.00395335702572]
A central goal for AI and causality is the joint discovery of abstract representations and causal structure.
Existing environments for studying causal induction are poorly suited for this objective because they have complicated task-specific causal graphs.
In this work, our goal is to facilitate research in learning representations of high-level variables as well as causal structures among them.
arXiv Detail & Related papers (2021-07-02T05:44:56Z) - Towards Causal Representation Learning [96.110881654479]
The two fields of machine learning and graphical causality arose and developed separately.
There is now cross-pollination and increasing interest in both fields to benefit from the advances of the other.
arXiv Detail & Related papers (2021-02-22T15:26:57Z) - Learning Robust Models Using The Principle of Independent Causal
Mechanisms [26.79262903241044]
We propose a new gradient-based learning framework whose objective function is derived from the ICM principle.
We show theoretically and experimentally that neural networks trained in this framework focus on relations remaining invariant across environments.
arXiv Detail & Related papers (2020-10-14T15:38:01Z) - Vulnerability Under Adversarial Machine Learning: Bias or Variance? [77.30759061082085]
We investigate the effect of adversarial machine learning on the bias and variance of a trained deep neural network.
Our analysis sheds light on why the deep neural networks have poor performance under adversarial perturbation.
We introduce a new adversarial machine learning algorithm with lower computational complexity than well-known adversarial machine learning strategies.
arXiv Detail & Related papers (2020-08-01T00:58:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.