Deep Fictitious Play-Based Potential Differential Games for Learning Human-Like Interaction at Unsignalized Intersections
- URL: http://arxiv.org/abs/2506.12283v1
- Date: Sat, 14 Jun 2025 00:08:33 GMT
- Title: Deep Fictitious Play-Based Potential Differential Games for Learning Human-Like Interaction at Unsignalized Intersections
- Authors: Kehua Chen, Shucheng Zhang, Yinhai Wang,
- Abstract summary: We learn human-like interactive driving policies at unsignalized intersections using Deep Fictitious Play.<n>To the best of our knowledge, this is the first study to train interactive driving policies using Deep Fictitious Play.
- Score: 14.779420473274737
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Modeling vehicle interactions at unsignalized intersections is a challenging task due to the complexity of the underlying game-theoretic processes. Although prior studies have attempted to capture interactive driving behaviors, most approaches relied solely on game-theoretic formulations and did not leverage naturalistic driving datasets. In this study, we learn human-like interactive driving policies at unsignalized intersections using Deep Fictitious Play. Specifically, we first model vehicle interactions as a Differential Game, which is then reformulated as a Potential Differential Game. The weights in the cost function are learned from the dataset and capture diverse driving styles. We also demonstrate that our framework provides a theoretical guarantee of convergence to a Nash equilibrium. To the best of our knowledge, this is the first study to train interactive driving policies using Deep Fictitious Play. We validate the effectiveness of our Deep Fictitious Play-Based Potential Differential Game (DFP-PDG) framework using the INTERACTION dataset. The results demonstrate that the proposed framework achieves satisfactory performance in learning human-like driving policies. The learned individual weights effectively capture variations in driver aggressiveness and preferences. Furthermore, the ablation study highlights the importance of each component within our model.
Related papers
- TPK: Trustworthy Trajectory Prediction Integrating Prior Knowledge For Interpretability and Kinematic Feasibility [11.436186697804835]
Trajectory prediction is crucial for autonomous driving, enabling vehicles to anticipate the movements of surrounding road users.<n>Current deep learning models often lack trustworthiness as their predictions can be physically infeasible and illogical to humans.<n>We propose incorporating interaction and kinematic priors of all agent classes to capture agent behavioral differences.
arXiv Detail & Related papers (2025-05-10T19:29:32Z) - Learning to Drive by Imitating Surrounding Vehicles [0.6612847014373572]
Imitation learning is a promising approach for training autonomous vehicles to navigate complex traffic environments.<n>We propose a data augmentation strategy that enhances imitation learning by leveraging the observed trajectories of nearby vehicles.<n>We evaluate our approach using the state-of-the-art learning-based planning method PLUTO on the nuPlan dataset and demonstrate that our augmentation method leads to improved performance in complex driving scenarios.
arXiv Detail & Related papers (2025-03-08T00:40:47Z) - ProIn: Learning to Predict Trajectory Based on Progressive Interactions for Autonomous Driving [11.887346755144485]
A progressive interaction network is proposed to enable the agent's feature to progressively focus on relevant maps.
The network progressively encodes the complex influence of map constraints into the agent's feature through graph convolutions.
Experiments have validated the superiority of progressive interactions to the existing one-stage interaction.
arXiv Detail & Related papers (2024-03-25T02:38:34Z) - Beyond One Model Fits All: Ensemble Deep Learning for Autonomous
Vehicles [16.398646583844286]
This study introduces three distinct neural network models corresponding to Mediated Perception, Behavior Reflex, and Direct Perception approaches.
Our architecture fuses information from the base, future latent vector prediction, and auxiliary task networks, using global routing commands to select appropriate action sub-networks.
arXiv Detail & Related papers (2023-12-10T04:40:02Z) - The Integration of Prediction and Planning in Deep Learning Automated Driving Systems: A Review [43.30610493968783]
We review state-of-the-art deep learning-based planning systems, and focus on how they integrate prediction.
We discuss the implications, strengths, and limitations of different integration principles.
arXiv Detail & Related papers (2023-08-10T17:53:03Z) - NeurIPS 2022 Competition: Driving SMARTS [60.948652154552136]
Driving SMARTS is a regular competition designed to tackle problems caused by the distribution shift in dynamic interaction contexts.
The proposed competition supports methodologically diverse solutions, such as reinforcement learning (RL) and offline learning methods.
arXiv Detail & Related papers (2022-11-14T17:10:53Z) - Exploring the trade off between human driving imitation and safety for
traffic simulation [0.34410212782758043]
We show that a trade-off exists between imitating human driving and maintaining safety when learning driving policies.
We propose a multi objective learning algorithm (MOPPO) that improves both objectives together.
arXiv Detail & Related papers (2022-08-09T14:30:19Z) - Learning Interactive Driving Policies via Data-driven Simulation [125.97811179463542]
Data-driven simulators promise high data-efficiency for driving policy learning.
Small underlying datasets often lack interesting and challenging edge cases for learning interactive driving.
We propose a simulation method that uses in-painted ado vehicles for learning robust driving policies.
arXiv Detail & Related papers (2021-11-23T20:14:02Z) - Learning to drive from a world on rails [78.28647825246472]
We learn an interactive vision-based driving policy from pre-recorded driving logs via a model-based approach.
A forward model of the world supervises a driving policy that predicts the outcome of any potential driving trajectory.
Our method ranks first on the CARLA leaderboard, attaining a 25% higher driving score while using 40 times less data.
arXiv Detail & Related papers (2021-05-03T05:55:30Z) - Divide-and-Conquer for Lane-Aware Diverse Trajectory Prediction [71.97877759413272]
Trajectory prediction is a safety-critical tool for autonomous vehicles to plan and execute actions.
Recent methods have achieved strong performances using Multi-Choice Learning objectives like winner-takes-all (WTA) or best-of-many.
Our work addresses two key challenges in trajectory prediction, learning outputs, and better predictions by imposing constraints using driving knowledge.
arXiv Detail & Related papers (2021-04-16T17:58:56Z) - Deep Structured Reactive Planning [94.92994828905984]
We propose a novel data-driven, reactive planning objective for self-driving vehicles.
We show that our model outperforms a non-reactive variant in successfully completing highly complex maneuvers.
arXiv Detail & Related papers (2021-01-18T01:43:36Z) - Human Trajectory Forecasting in Crowds: A Deep Learning Perspective [89.4600982169]
We present an in-depth analysis of existing deep learning-based methods for modelling social interactions.
We propose two knowledge-based data-driven methods to effectively capture these social interactions.
We develop a large scale interaction-centric benchmark TrajNet++, a significant yet missing component in the field of human trajectory forecasting.
arXiv Detail & Related papers (2020-07-07T17:19:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.