MatchPlant: An Open-Source Pipeline for UAV-Based Single-Plant Detection and Data Extraction
- URL: http://arxiv.org/abs/2506.12295v1
- Date: Sat, 14 Jun 2025 01:09:45 GMT
- Title: MatchPlant: An Open-Source Pipeline for UAV-Based Single-Plant Detection and Data Extraction
- Authors: Worasit Sangjan, Piyush Pandey, Norman B. Best, Jacob D. Washburn,
- Abstract summary: This study presents MatchPlant, a modular, graphical user interface-supported, open-source Python pipeline for UAV-based single-plant detection and geospatial trait extraction.<n>MatchPlant enables end-to-end by integrating UAV image processing, user-guided annotation, Conal Neural Network model training for object detection, forward projection of bounding boxes onto an orthomosaic, and shapefile generation for phenotypic analysis.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate identification of individual plants from unmanned aerial vehicle (UAV) images is essential for advancing high-throughput phenotyping and supporting data-driven decision-making in plant breeding. This study presents MatchPlant, a modular, graphical user interface-supported, open-source Python pipeline for UAV-based single-plant detection and geospatial trait extraction. MatchPlant enables end-to-end workflows by integrating UAV image processing, user-guided annotation, Convolutional Neural Network model training for object detection, forward projection of bounding boxes onto an orthomosaic, and shapefile generation for spatial phenotypic analysis. In an early-season maize case study, MatchPlant achieved reliable detection performance (validation AP: 89.6%, test AP: 85.9%) and effectively projected bounding boxes, covering 89.8% of manually annotated boxes with 87.5% of projections achieving an Intersection over Union (IoU) greater than 0.5. Trait values extracted from predicted bounding instances showed high agreement with manual annotations (r = 0.87-0.97, IoU >= 0.4). Detection outputs were reused across time points to extract plant height and Normalized Difference Vegetation Index with minimal additional annotation, facilitating efficient temporal phenotyping. By combining modular design, reproducibility, and geospatial precision, MatchPlant offers a scalable framework for UAV-based plant-level analysis with broad applicability in agricultural and environmental monitoring.
Related papers
- Tighnari: Multi-modal Plant Species Prediction Based on Hierarchical Cross-Attention Using Graph-Based and Vision Backbone-Extracted Features [1.5495593104596397]
We train a model to predict the outcomes of 4,716 plant surveys in Europe.<n>We build a network based on the backbone of the Swin-Transformer Block for extracting temporal Cubes features.<n>We then design a hierarchical cross-attention mechanism capable of fusing features from multiple modalities.
arXiv Detail & Related papers (2025-01-05T20:30:07Z) - Open-Set Deepfake Detection: A Parameter-Efficient Adaptation Method with Forgery Style Mixture [58.60915132222421]
We introduce an approach that is both general and parameter-efficient for face forgery detection.
We design a forgery-style mixture formulation that augments the diversity of forgery source domains.
We show that the designed model achieves state-of-the-art generalizability with significantly reduced trainable parameters.
arXiv Detail & Related papers (2024-08-23T01:53:36Z) - ODGEN: Domain-specific Object Detection Data Generation with Diffusion Models [21.158266387658905]
This paper presents ODGEN, a novel method to generate high-quality images conditioned on bounding boxes.
We first fine-tune a pre-trained diffusion model on both cropped foreground objects and entire images to fit target distributions.
We then propose to control the diffusion model using synthesized visual robustness prompts with spatial constraints and object-wise textual descriptions.
arXiv Detail & Related papers (2024-05-24T04:10:34Z) - Individual mapping of large polymorphic shrubs in high mountains using satellite images and deep learning [1.6889377382676625]
We release a large dataset of individual shrub delineations on freely available satellite imagery.
We use an instance segmentation model to map all junipers over the treeline for an entire biosphere reserve.
Our model achieved an F1-score in shrub delineation of 87.87% on the PI data and 76.86% on the FW data.
arXiv Detail & Related papers (2024-01-31T16:44:20Z) - Diffusion-Based Particle-DETR for BEV Perception [94.88305708174796]
Bird-Eye-View (BEV) is one of the most widely-used scene representations for visual perception in Autonomous Vehicles (AVs)
Recent diffusion-based methods offer a promising approach to uncertainty modeling for visual perception but fail to effectively detect small objects in the large coverage of the BEV.
Here, we address this problem by combining the diffusion paradigm with current state-of-the-art 3D object detectors in BEV.
arXiv Detail & Related papers (2023-12-18T09:52:14Z) - Integrated Sensing, Computation, and Communication for UAV-assisted
Federated Edge Learning [52.7230652428711]
Federated edge learning (FEEL) enables privacy-preserving model training through periodic communication between edge devices and the server.
Unmanned Aerial Vehicle (UAV)mounted edge devices are particularly advantageous for FEEL due to their flexibility and mobility in efficient data collection.
arXiv Detail & Related papers (2023-06-05T16:01:33Z) - Eff-3DPSeg: 3D organ-level plant shoot segmentation using
annotation-efficient point clouds [1.5882586857953638]
We propose a novel weakly supervised framework, Eff-3DPSeg, for 3D plant shoot segmentation.
High-resolution point clouds of soybean were reconstructed using a low-cost photogrammetry system.
A weakly-supervised deep learning method was proposed for plant organ segmentation.
arXiv Detail & Related papers (2022-12-20T14:09:37Z) - Generative models-based data labeling for deep networks regression:
application to seed maturity estimation from UAV multispectral images [3.6868861317674524]
Monitoring seed maturity is an increasing challenge in agriculture due to climate change and more restrictive practices.
Traditional methods are based on limited sampling in the field and analysis in laboratory.
We propose a method for estimating parsley seed maturity using multispectral UAV imagery, with a new approach for automatic data labeling.
arXiv Detail & Related papers (2022-08-09T09:06:51Z) - End-to-end deep learning for directly estimating grape yield from
ground-based imagery [53.086864957064876]
This study demonstrates the application of proximal imaging combined with deep learning for yield estimation in vineyards.
Three model architectures were tested: object detection, CNN regression, and transformer models.
The study showed the applicability of proximal imaging and deep learning for prediction of grapevine yield on a large scale.
arXiv Detail & Related papers (2022-08-04T01:34:46Z) - PnP-DETR: Towards Efficient Visual Analysis with Transformers [146.55679348493587]
Recently, DETR pioneered the solution vision tasks with transformers, it directly translates the image feature map into the object result.
Recent transformer-based image recognition model andTT show consistent efficiency gain.
arXiv Detail & Related papers (2021-09-15T01:10:30Z) - Field-Based Plot Extraction Using UAV RGB Images [18.420863296523727]
Unmanned Aerial Vehicles (UAVs) have become popular for use in plant phenotyping of field based crops, such as maize and sorghum.
We propose a new plot extraction method that will segment a UAV image into plots.
arXiv Detail & Related papers (2021-09-01T22:04:59Z) - DAAIN: Detection of Anomalous and Adversarial Input using Normalizing
Flows [52.31831255787147]
We introduce a novel technique, DAAIN, to detect out-of-distribution (OOD) inputs and adversarial attacks (AA)
Our approach monitors the inner workings of a neural network and learns a density estimator of the activation distribution.
Our model can be trained on a single GPU making it compute efficient and deployable without requiring specialized accelerators.
arXiv Detail & Related papers (2021-05-30T22:07:13Z) - A CNN Approach to Simultaneously Count Plants and Detect Plantation-Rows
from UAV Imagery [56.10033255997329]
We propose a novel deep learning method based on a Convolutional Neural Network (CNN)
It simultaneously detects and geolocates plantation-rows while counting its plants considering highly-dense plantation configurations.
The proposed method achieved state-of-the-art performance for counting and geolocating plants and plant-rows in UAV images from different types of crops.
arXiv Detail & Related papers (2020-12-31T18:51:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.