Perspective on Utilizing Foundation Models for Laboratory Automation in Materials Research
- URL: http://arxiv.org/abs/2506.12312v1
- Date: Sat, 14 Jun 2025 02:22:28 GMT
- Title: Perspective on Utilizing Foundation Models for Laboratory Automation in Materials Research
- Authors: Kan Hatakeyama-Sato, Toshihiko Nishida, Kenta Kitamura, Yoshitaka Ushiku, Koichi Takahashi, Yuta Nabae, Teruaki Hayakawa,
- Abstract summary: This review explores the potential of foundation models to advance laboratory automation in the materials and chemical sciences.<n>It emphasizes the dual roles of these models: cognitive functions for experimental planning and data analysis, and physical functions for hardware operations.<n>Recent advancements have demonstrated the feasibility of using large language models (LLMs) and multimodal robotic systems to handle complex and dynamic laboratory tasks.
- Score: 6.793869699081147
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: This review explores the potential of foundation models to advance laboratory automation in the materials and chemical sciences. It emphasizes the dual roles of these models: cognitive functions for experimental planning and data analysis, and physical functions for hardware operations. While traditional laboratory automation has relied heavily on specialized, rigid systems, foundation models offer adaptability through their general-purpose intelligence and multimodal capabilities. Recent advancements have demonstrated the feasibility of using large language models (LLMs) and multimodal robotic systems to handle complex and dynamic laboratory tasks. However, significant challenges remain, including precision manipulation of hardware, integration of multimodal data, and ensuring operational safety. This paper outlines a roadmap highlighting future directions, advocating for close interdisciplinary collaboration, benchmark establishment, and strategic human-AI integration to realize fully autonomous experimental laboratories.
Related papers
- An AI-native experimental laboratory for autonomous biomolecular engineering [12.382004681010915]
We present an AI-native autonomous laboratory, targeting highly complex scientific experiments for applications like autonomous biomolecular engineering.<n>This system autonomously manages instrumentation, formulates experiment-specific procedures and optimizations, and concurrently serves multiple user requests.<n>It also enables applications in fields such as disease diagnostics, drug development, and information storage.
arXiv Detail & Related papers (2025-07-03T07:21:19Z) - BioMARS: A Multi-Agent Robotic System for Autonomous Biological Experiments [8.317138109309967]
Large language models (LLMs) and vision-language models (VLMs) have the potential to transform biological research by enabling autonomous experimentation.<n>Here we introduce BioMARS, an intelligent platform that integrates LLMs, VLMs, and modular robotics to autonomously design, plan, and execute biological experiments.<n>A web interface enables real-time human-AI collaboration, while a modular backend allows scalable integration with laboratory hardware.
arXiv Detail & Related papers (2025-07-02T08:47:02Z) - A Survey of AI for Materials Science: Foundation Models, LLM Agents, Datasets, and Tools [15.928285656168422]
Foundation models (FMs) are enabling scalable, general-purpose, and multimodal AI systems for scientific discovery.<n>This survey provides a comprehensive overview of foundation models, agentic systems, datasets, and computational tools supporting this growing field.
arXiv Detail & Related papers (2025-06-25T18:10:30Z) - Multi-Agent Systems for Robotic Autonomy with LLMs [7.113794752528622]
The framework includes three core agents: Task Analyst, Robot Designer, and Reinforcement Learning Designer.<n>Results demonstrate that the proposed system can design feasible robots with control strategies when appropriate task inputs are provided.
arXiv Detail & Related papers (2025-05-09T03:52:37Z) - Towards Artificial Intelligence Research Assistant for Expert-Involved Learning [64.7438151207189]
Large Language Models (LLMs) and Large Multi-Modal Models (LMMs) have emerged as transformative tools in scientific research.<n>We present textbfARtificial textbfIntelligence research assistant for textbfExpert-involved textbfLearning (ARIEL)
arXiv Detail & Related papers (2025-05-03T14:21:48Z) - An LLM-enabled Multi-Agent Autonomous Mechatronics Design Framework [49.633199780510864]
This work proposes a multi-agent autonomous mechatronics design framework, integrating expertise across mechanical design, optimization, electronics, and software engineering.<n> operating primarily through a language-driven workflow, the framework incorporates structured human feedback to ensure robust performance under real-world constraints.<n>A fully functional autonomous vessel was developed with optimized propulsion, cost-effective electronics, and advanced control.
arXiv Detail & Related papers (2025-04-20T16:57:45Z) - MoRE: Unlocking Scalability in Reinforcement Learning for Quadruped Vision-Language-Action Models [34.138699712315]
This paper introduces a novel vision--action (VLA) model, mixture of robotic experts (MoRE) for quadruped robots.<n>MoRE integrates multiple low-rank adaptation modules as distinct experts within a dense multi-modal large language model.<n>Experiments demonstrate that MoRE outperforms all baselines across six different skills and exhibits superior generalization capabilities in out-of-distribution scenarios.
arXiv Detail & Related papers (2025-03-11T03:13:45Z) - AtomAgents: Alloy design and discovery through physics-aware multi-modal multi-agent artificial intelligence [0.0]
The proposed physics-aware generative AI platform, AtomAgents, synergizes the intelligence of large language models (LLM)
Our results enable accurate prediction of key characteristics across alloys and highlight the crucial role of solid solution alloying to steer the development of advanced metallic alloys.
arXiv Detail & Related papers (2024-07-13T22:46:02Z) - A Survey on Robotics with Foundation Models: toward Embodied AI [30.999414445286757]
Recent advances in computer vision, natural language processing, and multi-modality learning have shown that the foundation models have superhuman capabilities for specific tasks.
This survey aims to provide a comprehensive and up-to-date overview of foundation models in robotics, focusing on autonomous manipulation and encompassing high-level planning and low-level control.
arXiv Detail & Related papers (2024-02-04T07:55:01Z) - Toward General-Purpose Robots via Foundation Models: A Survey and Meta-Analysis [82.59451639072073]
General-purpose robots operate seamlessly in any environment, with any object, and utilize various skills to complete diverse tasks.
As a community, we have been constraining most robotic systems by designing them for specific tasks, training them on specific datasets, and deploying them within specific environments.
Motivated by the impressive open-set performance and content generation capabilities of web-scale, large-capacity pre-trained models, we devote this survey to exploring how foundation models can be applied to general-purpose robotics.
arXiv Detail & Related papers (2023-12-14T10:02:55Z) - DIME: Fine-grained Interpretations of Multimodal Models via Disentangled
Local Explanations [119.1953397679783]
We focus on advancing the state-of-the-art in interpreting multimodal models.
Our proposed approach, DIME, enables accurate and fine-grained analysis of multimodal models.
arXiv Detail & Related papers (2022-03-03T20:52:47Z) - Human-Robot Collaboration and Machine Learning: A Systematic Review of
Recent Research [69.48907856390834]
Human-robot collaboration (HRC) is the approach that explores the interaction between a human and a robot.
This paper proposes a thorough literature review of the use of machine learning techniques in the context of HRC.
arXiv Detail & Related papers (2021-10-14T15:14:33Z) - Integrated Benchmarking and Design for Reproducible and Accessible
Evaluation of Robotic Agents [61.36681529571202]
We describe a new concept for reproducible robotics research that integrates development and benchmarking.
One of the central components of this setup is the Duckietown Autolab, a standardized setup that is itself relatively low-cost and reproducible.
We validate the system by analyzing the repeatability of experiments conducted using the infrastructure and show that there is low variance across different robot hardware and across different remote labs.
arXiv Detail & Related papers (2020-09-09T15:31:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.