論文の概要: The Budget AI Researcher and the Power of RAG Chains
- arxiv url: http://arxiv.org/abs/2506.12317v1
- Date: Sat, 14 Jun 2025 02:40:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-17 17:28:45.794213
- Title: The Budget AI Researcher and the Power of RAG Chains
- Title(参考訳): 予算AI研究者とRAGチェインの力
- Authors: Franklin Lee, Tengfei Ma,
- Abstract要約: 研究アイデア生成への現在のアプローチは、しばしばジェネリック・大型言語モデル(LLM)に依存している。
私たちのフレームワークであるThe Budget AI Researcherは、検索強化ジェネレーションチェーン、ベクトルデータベース、トピック誘導ペアリングを使用して、数百の機械学習論文の概念を再結合します。
このシステムは、機械学習の広大なサブフィールドにまたがる9つの主要なAIカンファレンスから論文を取り込み、それらを階層的なトピックツリーに整理する。
- 参考スコア(独自算出の注目度): 4.797627592793464
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Navigating the vast and rapidly growing body of scientific literature is a formidable challenge for aspiring researchers. Current approaches to supporting research idea generation often rely on generic large language models (LLMs). While LLMs are effective at aiding comprehension and summarization, they often fall short in guiding users toward practical research ideas due to their limitations. In this study, we present a novel structural framework for research ideation. Our framework, The Budget AI Researcher, uses retrieval-augmented generation (RAG) chains, vector databases, and topic-guided pairing to recombine concepts from hundreds of machine learning papers. The system ingests papers from nine major AI conferences, which collectively span the vast subfields of machine learning, and organizes them into a hierarchical topic tree. It uses the tree to identify distant topic pairs, generate novel research abstracts, and refine them through iterative self-evaluation against relevant literature and peer reviews, generating and refining abstracts that are both grounded in real-world research and demonstrably interesting. Experiments using LLM-based metrics indicate that our method significantly improves the concreteness of generated research ideas relative to standard prompting approaches. Human evaluations further demonstrate a substantial enhancement in the perceived interestingness of the outputs. By bridging the gap between academic data and creative generation, the Budget AI Researcher offers a practical, free tool for accelerating scientific discovery and lowering the barrier for aspiring researchers. Beyond research ideation, this approach inspires solutions to the broader challenge of generating personalized, context-aware outputs grounded in evolving real-world knowledge.
- Abstract(参考訳): 巨大で急速に成長する科学文献をナビゲートすることは、研究を志す研究者にとって非常に難しい課題だ。
研究アイデア生成への現在のアプローチは、しばしば汎用的な大規模言語モデル(LLM)に依存している。
LLMは理解と要約を支援するのに有効であるが、それらの制限のため、ユーザを実践的な研究アイデアへと導くには不十分であることが多い。
本研究では,研究思想のための新しい構造的枠組みを提案する。
私たちのフレームワークであるThe Budget AI Researcherは、検索強化世代(RAG)チェーン、ベクトルデータベース、トピック誘導ペアリングを使用して、数百の機械学習論文の概念を再結合します。
このシステムは、機械学習の広大なサブフィールドにまたがる9つの主要なAIカンファレンスから論文を取り込み、それらを階層的なトピックツリーに整理する。
この木を使って、遠くの話題のペアを識別し、新しい研究の要約を作成し、関連する文献やピアレビューに対する反復的な自己評価を通じてそれらを洗練し、現実世界の研究に基礎を置き、実証的に興味深い抽象物を生成・精錬する。
LLMを用いた実験により, 提案手法は, 標準的なプロンプト手法と比較して, 生成した研究思想の具体性を大幅に向上することが示された。
人間の評価は、出力の知覚的面白さを著しく向上させる。
学術データと創造的生成のギャップを埋めることによって、Budget AI Researcherは、科学的発見を加速し、意欲的な研究者の障壁を低くする実用的な無料のツールを提供する。
研究のアイデアの他に、このアプローチは、現実世界の知識の進化に根ざした、パーソナライズされたコンテキスト対応のアウトプットを生成するという、より広範な課題への解決策を生み出します。
関連論文リスト
- IRIS: Interactive Research Ideation System for Accelerating Scientific Discovery [27.218896203253987]
IRISは、研究者が大規模言語モデル(LLM)を補助する科学的概念を活用するために設計されたオープンソースのプラットフォームである。
IRISは、モンテカルロ木探索(MCTS)による適応的なテスト時間計算拡張、きめ細かいフィードバック機構、クエリベースの文献合成など、アイデアを強化する革新的な機能を備えている。
我々は様々な分野の研究者とユーザスタディを行い、システムの有効性を検証し、アイデアの充実を図っている。
論文 参考訳(メタデータ) (2025-04-23T14:01:36Z) - Graph of AI Ideas: Leveraging Knowledge Graphs and LLMs for AI Research Idea Generation [25.04071920426971]
我々は,オープンアクセス論文が支配するAI研究分野を対象とした,AI思想グラフ(GoAI)というフレームワークを提案する。
このフレームワークは、関連する文献を知識グラフ内のエンティティに整理し、引用に含まれる意味情報をグラフ内の関係にまとめる。
論文 参考訳(メタデータ) (2025-03-11T15:36:38Z) - Transforming Science with Large Language Models: A Survey on AI-assisted Scientific Discovery, Experimentation, Content Generation, and Evaluation [58.064940977804596]
多くの新しいAIモデルとツールが提案され、世界中の研究者や学者が研究をより効果的かつ効率的に実施できるようにすることを約束している。
これらのツールの欠点と誤用の可能性に関する倫理的懸念は、議論の中で特に顕著な位置を占める。
論文 参考訳(メタデータ) (2025-02-07T18:26:45Z) - Enhancing LLM Reasoning with Reward-guided Tree Search [95.06503095273395]
o1のような推論アプローチは困難で、研究者はこのオープンな研究領域を前進させようとさまざまな試みを行ってきた。
本稿では,報酬誘導木探索アルゴリズムを用いて,LLMの推論能力を高めるための予備的な検討を行う。
論文 参考訳(メタデータ) (2024-11-18T16:15:17Z) - SciPIP: An LLM-based Scientific Paper Idea Proposer [30.670219064905677]
SciPIPは,文献検索とアイデア生成の両面での改善を通じて,科学的アイデアの提案を強化するために設計された,革新的なフレームワークである。
自然言語処理やコンピュータビジョンなど,さまざまな領域で実施した実験では,SciPIPが革新的で有用なアイデアを多数生成する能力を示した。
論文 参考訳(メタデータ) (2024-10-30T16:18:22Z) - Chain of Ideas: Revolutionizing Research Via Novel Idea Development with LLM Agents [64.64280477958283]
科学文献の急激な増加は、研究者が最近の進歩と意義ある研究方向を見極めるのを困難にしている。
大規模言語モデル(LLM)の最近の発展は、新しい研究のアイデアを自動生成するための有望な道のりを示唆している。
本研究では, チェーン構造に関連文献を整理し, 研究領域の進展を効果的に反映する, LLMベースのエージェントであるChain-of-Ideas(CoI)エージェントを提案する。
論文 参考訳(メタデータ) (2024-10-17T03:26:37Z) - Many Heads Are Better Than One: Improved Scientific Idea Generation by A LLM-Based Multi-Agent System [62.832818186789545]
Virtual Scientists (VirSci) は、科学研究に固有のチームワークを模倣するために設計されたマルチエージェントシステムである。
VirSciは研究のアイデアを共同で生成し、評価し、洗練するエージェントのチームを組織している。
このマルチエージェントアプローチは、新しい科学的アイデアを生み出す上で、最先端の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-10-12T07:16:22Z) - From Linguistic Giants to Sensory Maestros: A Survey on Cross-Modal Reasoning with Large Language Models [56.9134620424985]
クロスモーダル推論(CMR)は、より高度な人工知能システムへの進化における重要な能力として、ますます認識されている。
CMRタスクに取り組むためにLLM(Large Language Models)をデプロイする最近のトレンドは、その有効性を高めるためのアプローチの新たな主流となっている。
本調査では,LLMを用いてCMRで適用された現在の方法論を,詳細な3階層分類に分類する。
論文 参考訳(メタデータ) (2024-09-19T02:51:54Z) - ResearchAgent: Iterative Research Idea Generation over Scientific Literature with Large Language Models [56.08917291606421]
ResearchAgentは、新しい作品のアイデアと運用のためのAIベースのシステムである。
ResearchAgentは、新しい問題を自動で定義し、手法と設計実験を提案し、繰り返し修正する。
我々は、複数の分野にわたる科学論文に関するResearchAgentを実験的に検証した。
論文 参考訳(メタデータ) (2024-04-11T13:36:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。