論文の概要: SciPIP: An LLM-based Scientific Paper Idea Proposer
- arxiv url: http://arxiv.org/abs/2410.23166v2
- Date: Mon, 17 Feb 2025 08:59:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 14:07:47.632792
- Title: SciPIP: An LLM-based Scientific Paper Idea Proposer
- Title(参考訳): SciPIP: LLMをベースとした科学論文のアイデアプロポーラ
- Authors: Wenxiao Wang, Lihui Gu, Liye Zhang, Yunxiang Luo, Yi Dai, Chen Shen, Liang Xie, Binbin Lin, Xiaofei He, Jieping Ye,
- Abstract要約: SciPIPは,文献検索とアイデア生成の両面での改善を通じて,科学的アイデアの提案を強化するために設計された,革新的なフレームワークである。
自然言語処理やコンピュータビジョンなど,さまざまな領域で実施した実験では,SciPIPが革新的で有用なアイデアを多数生成する能力を示した。
- 参考スコア(独自算出の注目度): 30.670219064905677
- License:
- Abstract: The rapid advancement of large language models (LLMs) has opened new possibilities for automating the proposal of innovative scientific ideas. This process involves two key phases: literature retrieval and idea generation. However, existing approaches often fall short due to their reliance on keyword-based search tools during the retrieval phase, which neglects crucial semantic information and frequently results in incomplete retrieval outcomes. Similarly, in the idea generation phase, current methodologies tend to depend solely on the internal knowledge of LLMs or metadata from retrieved papers, thereby overlooking significant valuable insights contained within the full texts. To address these limitations, we introduce SciPIP, an innovative framework designed to enhance the LLM-based proposal of scientific ideas through improvements in both literature retrieval and idea generation. Our approach begins with the construction of a comprehensive literature database that supports advanced retrieval based not only on keywords but also on semantics and citation relationships. This is complemented by the introduction of a multi-granularity retrieval algorithm aimed at ensuring more thorough and exhaustive retrieval results. For the idea generation phase, we propose a dual-path framework that effectively integrates both the content of retrieved papers and the extensive internal knowledge of LLMs. This integration significantly boosts the novelty, feasibility, and practical value of proposed ideas. Our experiments, conducted across various domains such as natural language processing and computer vision, demonstrate SciPIP's capability to generate a multitude of innovative and useful ideas. These findings underscore SciPIP's potential as a valuable tool for researchers seeking to advance their fields with groundbreaking concepts.
- Abstract(参考訳): 大規模言語モデル(LLM)の急速な進歩は、革新的な科学的アイデアの提案を自動化するための新たな可能性を開いた。
このプロセスには、文学検索とアイデア生成という2つの重要なフェーズが含まれる。
しかし、検索期間中にキーワードベースの検索ツールに頼っているため、既存のアプローチは不足することが多く、重要な意味情報を無視し、しばしば不完全な検索結果をもたらす。
同様に、アイデア生成フェーズでは、現在の方法論はLLMの内部知識や取得した論文のメタデータにのみ依存する傾向にあり、それによって全文に含まれる重要な洞察を見落としてしまう。
これらの制約に対処するために,文献検索とアイデア生成の両面での改善を通じて,LLMに基づく科学的アイデアの提案を強化するために設計された,革新的なフレームワークであるSciPIPを紹介した。
提案手法は,キーワードだけでなくセマンティクスや引用関係に基づく高度な検索を支援する総合文献データベースの構築から始まる。
これは、より徹底的で徹底的な検索結果を保証することを目的とした多粒度検索アルゴリズムの導入によって補完される。
アイデア生成フェーズでは、抽出した論文の内容とLLMの内部知識の両方を効果的に統合するデュアルパスフレームワークを提案する。
この統合により、提案されたアイデアの新規性、実現可能性、実践的価値が大幅に向上する。
自然言語処理やコンピュータビジョンなど,さまざまな領域で実施した実験では,SciPIPが革新的で有用なアイデアを多数生成する能力を示した。
これらの知見は、SciPIPが研究分野を画期的な概念で前進させようとする研究者にとって貴重なツールである可能性を裏付けている。
関連論文リスト
- CoAT: Chain-of-Associated-Thoughts Framework for Enhancing Large Language Models Reasoning [0.8192907805418583]
Chain-of-Associated-Thoughts (CoAT)フレームワークは、モンテカルロ木探索(MCTS)アルゴリズムと「連想記憶」と呼ばれる新しいキー情報を統合する動的メカニズムの革新的な相乗効果を導入している。
MCTSの構造的探索能力と連想記憶の適応学習能力を組み合わせることで、CoATはLLM検索空間を大幅に拡張し、多様な推論経路を探索し、その知識ベースをリアルタイムで動的に更新することを可能にする。
これらの実験により、我々のフレームワークは、精度、コヒーレンス、多様性に関する従来の推論プロセスより優れていることが示された。
論文 参考訳(メタデータ) (2025-02-04T15:10:33Z) - CoEvo: Continual Evolution of Symbolic Solutions Using Large Language Models [14.161627541155775]
大規模言語モデル(LLM)は人工知能の変換ツールとして登場した。
本稿では,LLMが科学・工学分野における記号解の発見を促進する可能性について考察する。
論文 参考訳(メタデータ) (2024-12-25T12:27:27Z) - IdeaBench: Benchmarking Large Language Models for Research Idea Generation [19.66218274796796]
大規模言語モデル(LLM)は、人々が人工知能(AI)システムと対話する方法を変革した。
包括的データセットと評価フレームワークを含むベンチマークシステムであるIdeanBenchを提案する。
私たちのデータセットは、さまざまな影響力のある論文のタイトルと要約と、参照された作品で構成されています。
まず、GPT-4oを用いて、新規性や実現可能性などのユーザ固有の品質指標に基づいて、アイデアをランク付けし、スケーラブルなパーソナライズを可能にする。
論文 参考訳(メタデータ) (2024-10-31T17:04:59Z) - Automating Knowledge Discovery from Scientific Literature via LLMs: A Dual-Agent Approach with Progressive Ontology Prompting [59.97247234955861]
LLM-Duoという,プログレッシブプロンプトアルゴリズムとデュアルエージェントシステムを組み合わせた,大規模言語モデル(LLM)に基づく新しいフレームワークを提案する。
言語治療領域における64,177論文からの2,421件の介入を同定した。
論文 参考訳(メタデータ) (2024-08-20T16:42:23Z) - Retrieval-Enhanced Machine Learning: Synthesis and Opportunities [60.34182805429511]
検索エンハンスメントは機械学習(ML)の幅広い範囲に拡張できる
この研究は、MLの様々な領域の文献を、現在の文献から欠落している一貫した表記で合成することで、このパラダイムの正式なフレームワークであるRetrieval-Enhanced Machine Learning (REML)を導入する。
本研究の目的は、様々な分野の研究者に対して、検索強化モデルの包括的、正式に構造化された枠組みを付与し、学際的な将来の研究を促進することである。
論文 参考訳(メタデータ) (2024-07-17T20:01:21Z) - Exploring the landscape of large language models: Foundations, techniques, and challenges [8.042562891309414]
この記事では、コンテキスト内学習の力学と微調整アプローチのスペクトルについて光を当てている。
革新的な強化学習フレームワークを通じて、LLMが人間の好みとより緊密に連携する方法について検討する。
LLMデプロイメントの倫理的側面は議論され、マインドフルで責任あるアプリケーションの必要性を浮き彫りにしている。
論文 参考訳(メタデータ) (2024-04-18T08:01:20Z) - ResearchAgent: Iterative Research Idea Generation over Scientific Literature with Large Language Models [56.08917291606421]
ResearchAgentは、新しい作品のアイデアと運用のためのAIベースのシステムである。
ResearchAgentは、新しい問題を自動で定義し、手法と設計実験を提案し、繰り返し修正する。
我々は、複数の分野にわたる科学論文に関するResearchAgentを実験的に検証した。
論文 参考訳(メタデータ) (2024-04-11T13:36:29Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
大規模言語モデル(LLM)推論は急速に進化しており、機会と課題のユニークなブレンドを提示している。
本調査は, 研究状況を要約するだけでなく, 屋上モデルに基づく枠組みを導入することによって, 従来の文献レビューから際立っている。
このフレームワークは、ハードウェアデバイスにLSMをデプロイする際のボトルネックを特定し、実用上の問題を明確に理解する。
論文 参考訳(メタデータ) (2024-02-26T07:33:05Z) - Large Search Model: Redefining Search Stack in the Era of LLMs [63.503320030117145]
我々は,1つの大言語モデル(LLM)で検索タスクを統一することにより,従来の検索スタックを再定義する,大規模検索モデルと呼ばれる新しい概念的フレームワークを導入する。
全てのタスクは自動回帰テキスト生成問題として定式化され、自然言語のプロンプトを使ってタスクをカスタマイズできる。
提案フレームワークは,LLMの強力な言語理解と推論能力を活用し,既存の検索スタックを簡素化しつつ,検索結果の質を向上させる能力を提供する。
論文 参考訳(メタデータ) (2023-10-23T05:52:09Z) - A Comprehensive Overview of Large Language Models [68.22178313875618]
大規模言語モデル(LLM)は、最近自然言語処理タスクにおいて顕著な機能を示した。
本稿では, LLM関連概念の幅広い範囲について, 既存の文献について概説する。
論文 参考訳(メタデータ) (2023-07-12T20:01:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。