Doctor Approved: Generating Medically Accurate Skin Disease Images through AI-Expert Feedback
- URL: http://arxiv.org/abs/2506.12323v1
- Date: Sat, 14 Jun 2025 03:15:09 GMT
- Title: Doctor Approved: Generating Medically Accurate Skin Disease Images through AI-Expert Feedback
- Authors: Janet Wang, Yunbei Zhang, Zhengming Ding, Jihun Hamm,
- Abstract summary: We propose a novel framework, coined MAGIC, that synthesizes clinically accurate skin disease images for data augmentation.<n>Our method creatively translates expert-defined criteria into actionable feedback for image synthesis of DMs.
- Score: 43.1078084014722
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Paucity of medical data severely limits the generalizability of diagnostic ML models, as the full spectrum of disease variability can not be represented by a small clinical dataset. To address this, diffusion models (DMs) have been considered as a promising avenue for synthetic image generation and augmentation. However, they frequently produce medically inaccurate images, deteriorating the model performance. Expert domain knowledge is critical for synthesizing images that correctly encode clinical information, especially when data is scarce and quality outweighs quantity. Existing approaches for incorporating human feedback, such as reinforcement learning (RL) and Direct Preference Optimization (DPO), rely on robust reward functions or demand labor-intensive expert evaluations. Recent progress in Multimodal Large Language Models (MLLMs) reveals their strong visual reasoning capabilities, making them adept candidates as evaluators. In this work, we propose a novel framework, coined MAGIC (Medically Accurate Generation of Images through AI-Expert Collaboration), that synthesizes clinically accurate skin disease images for data augmentation. Our method creatively translates expert-defined criteria into actionable feedback for image synthesis of DMs, significantly improving clinical accuracy while reducing the direct human workload. Experiments demonstrate that our method greatly improves the clinical quality of synthesized skin disease images, with outputs aligning with dermatologist assessments. Additionally, augmenting training data with these synthesized images improves diagnostic accuracy by +9.02% on a challenging 20-condition skin disease classification task, and by +13.89% in the few-shot setting.
Related papers
- SkinDualGen: Prompt-Driven Diffusion for Simultaneous Image-Mask Generation in Skin Lesions [0.0]
We propose a novel method that leverages the pretrained Stable Diffusion-2.0 model to generate high-quality synthetic skin lesion images.<n>A hybrid dataset combining real and synthetic data markedly enhances the performance of classification and segmentation models.
arXiv Detail & Related papers (2025-07-26T15:00:37Z) - Eyes Tell the Truth: GazeVal Highlights Shortcomings of Generative AI in Medical Imaging [6.9112781921075195]
We introduce GazeVal, a framework that synergizes expert eye-tracking data with direct radiological evaluations to assess the quality of synthetic medical images.<n>Experiments with sixteen radiologists revealed that 96.6% of the generated images were identified as fake.
arXiv Detail & Related papers (2025-03-26T20:11:07Z) - Latent Drifting in Diffusion Models for Counterfactual Medical Image Synthesis [55.959002385347645]
Latent Drifting enables diffusion models to be conditioned for medical images fitted for the complex task of counterfactual image generation.<n>We evaluate our method on three public longitudinal benchmark datasets of brain MRI and chest X-rays for counterfactual image generation.
arXiv Detail & Related papers (2024-12-30T01:59:34Z) - Clinical Evaluation of Medical Image Synthesis: A Case Study in Wireless Capsule Endoscopy [63.39037092484374]
Synthetic Data Generation based on Artificial Intelligence (AI) can transform the way clinical medicine is delivered.<n>This study focuses on the clinical evaluation of medical SDG, with a proof-of-concept investigation on diagnosing Inflammatory Bowel Disease (IBD) using Wireless Capsule Endoscopy (WCE) images.<n>The results show that TIDE-II generates clinically plausible, very realistic WCE images, of improved quality compared to relevant state-of-the-art generative models.
arXiv Detail & Related papers (2024-10-31T19:48:50Z) - FairSkin: Fair Diffusion for Skin Disease Image Generation [54.29840149709033]
Diffusion Model (DM) has become a leading method in generating synthetic medical images, but it suffers from a critical twofold bias.
We propose FairSkin, a novel DM framework that mitigates these biases through a three-level resampling mechanism.
Our approach significantly improves the diversity and quality of generated images, contributing to more equitable skin disease detection in clinical settings.
arXiv Detail & Related papers (2024-10-29T21:37:03Z) - Radiology Report Generation Using Transformers Conditioned with
Non-imaging Data [55.17268696112258]
This paper proposes a novel multi-modal transformer network that integrates chest x-ray (CXR) images and associated patient demographic information.
The proposed network uses a convolutional neural network to extract visual features from CXRs and a transformer-based encoder-decoder network that combines the visual features with semantic text embeddings of patient demographic information.
arXiv Detail & Related papers (2023-11-18T14:52:26Z) - Revamping AI Models in Dermatology: Overcoming Critical Challenges for
Enhanced Skin Lesion Diagnosis [8.430482797862926]
We present an All-In-One textbfHierarchical-textbfOut of Distribution-textbfClinical Triage model.
For a clinical image, our model generates three outputs: a hierarchical prediction, an alert for out-of-distribution images, and a recommendation for dermoscopy.
Our versatile model provides valuable decision support for lesion diagnosis and sets a promising precedent for medical AI applications.
arXiv Detail & Related papers (2023-11-02T06:08:49Z) - DiffBoost: Enhancing Medical Image Segmentation via Text-Guided Diffusion Model [3.890243179348094]
Large-scale, big-variant, high-quality data are crucial for developing robust and successful deep-learning models for medical applications.<n>This paper proposes a novel approach by developing controllable diffusion models for medical image synthesis, called DiffBoost.<n>We leverage recent diffusion probabilistic models to generate realistic and diverse synthetic medical image data.
arXiv Detail & Related papers (2023-10-19T16:18:02Z) - Augmenting medical image classifiers with synthetic data from latent
diffusion models [12.077733447347592]
We show that latent diffusion models can scalably generate images of skin disease.
We generate and analyze a new dataset of 458,920 synthetic images produced using several generation strategies.
arXiv Detail & Related papers (2023-08-23T22:34:49Z) - Aligning Synthetic Medical Images with Clinical Knowledge using Human
Feedback [22.390670838355295]
This paper introduces a pathologist-in-the-loop framework for generating clinically-plausible synthetic medical images.
We show that human feedback significantly improves the quality of synthetic images in terms of fidelity, diversity, utility in downstream applications, and plausibility as evaluated by experts.
arXiv Detail & Related papers (2023-06-16T21:54:20Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
We propose itvariational knowledge distillation (VKD), which is a new probabilistic inference framework for disease classification based on X-rays.
We demonstrate the effectiveness of our method on three public benchmark datasets with paired X-ray images and EHRs.
arXiv Detail & Related papers (2021-03-19T14:13:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.