Revamping AI Models in Dermatology: Overcoming Critical Challenges for
Enhanced Skin Lesion Diagnosis
- URL: http://arxiv.org/abs/2311.01009v1
- Date: Thu, 2 Nov 2023 06:08:49 GMT
- Title: Revamping AI Models in Dermatology: Overcoming Critical Challenges for
Enhanced Skin Lesion Diagnosis
- Authors: Deval Mehta, Brigid Betz-Stablein, Toan D Nguyen, Yaniv Gal, Adrian
Bowling, Martin Haskett, Maithili Sashindranath, Paul Bonnington, Victoria
Mar, H Peter Soyer, Zongyuan Ge
- Abstract summary: We present an All-In-One textbfHierarchical-textbfOut of Distribution-textbfClinical Triage model.
For a clinical image, our model generates three outputs: a hierarchical prediction, an alert for out-of-distribution images, and a recommendation for dermoscopy.
Our versatile model provides valuable decision support for lesion diagnosis and sets a promising precedent for medical AI applications.
- Score: 8.430482797862926
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The surge in developing deep learning models for diagnosing skin lesions
through image analysis is notable, yet their clinical black faces challenges.
Current dermatology AI models have limitations: limited number of possible
diagnostic outputs, lack of real-world testing on uncommon skin lesions,
inability to detect out-of-distribution images, and over-reliance on
dermoscopic images. To address these, we present an All-In-One
\textbf{H}ierarchical-\textbf{O}ut of Distribution-\textbf{C}linical Triage
(HOT) model. For a clinical image, our model generates three outputs: a
hierarchical prediction, an alert for out-of-distribution images, and a
recommendation for dermoscopy if clinical image alone is insufficient for
diagnosis. When the recommendation is pursued, it integrates both clinical and
dermoscopic images to deliver final diagnosis. Extensive experiments on a
representative cutaneous lesion dataset demonstrate the effectiveness and
synergy of each component within our framework. Our versatile model provides
valuable decision support for lesion diagnosis and sets a promising precedent
for medical AI applications.
Related papers
- FairSkin: Fair Diffusion for Skin Disease Image Generation [54.29840149709033]
Diffusion Model (DM) has become a leading method in generating synthetic medical images, but it suffers from a critical twofold bias.
We propose FairSkin, a novel DM framework that mitigates these biases through a three-level resampling mechanism.
Our approach significantly improves the diversity and quality of generated images, contributing to more equitable skin disease detection in clinical settings.
arXiv Detail & Related papers (2024-10-29T21:37:03Z) - Deep Generative Models for 3D Medical Image Synthesis [1.931185411277237]
Deep generative modeling has emerged as a powerful tool for synthesizing realistic medical images.
This chapter explores various deep generative models for 3D medical image synthesis.
arXiv Detail & Related papers (2024-10-23T08:33:23Z) - Multiscale Latent Diffusion Model for Enhanced Feature Extraction from Medical Images [5.395912799904941]
variations in CT scanner models and acquisition protocols introduce significant variability in the extracted radiomic features.
LTDiff++ is a multiscale latent diffusion model designed to enhance feature extraction in medical imaging.
arXiv Detail & Related papers (2024-10-05T02:13:57Z) - Enhancing Skin Disease Diagnosis: Interpretable Visual Concept Discovery with SAM Empowerment [41.398287899966995]
Current AI-assisted skin image diagnosis has achieved dermatologist-level performance in classifying skin cancer.
We propose a novel Cross-Attentive Fusion framework for interpretable skin lesion diagnosis.
arXiv Detail & Related papers (2024-09-14T20:11:25Z) - A Novel Multi-Task Model Imitating Dermatologists for Accurate
Differential Diagnosis of Skin Diseases in Clinical Images [27.546559936765863]
A novel multi-task model, namely DermImitFormer, is proposed to fill this gap by imitating dermatologists' diagnostic procedures and strategies.
The model simultaneously predicts body parts and lesion attributes in addition to the disease itself, enhancing diagnosis accuracy and improving diagnosis interpretability.
arXiv Detail & Related papers (2023-07-17T08:05:30Z) - Improving Deep Facial Phenotyping for Ultra-rare Disorder Verification
Using Model Ensembles [52.77024349608834]
We analyze the influence of replacing a DCNN with a state-of-the-art face recognition approach, iResNet with ArcFace.
Our proposed ensemble model achieves state-of-the-art performance on both seen and unseen disorders.
arXiv Detail & Related papers (2022-11-12T23:28:54Z) - Malignancy Prediction and Lesion Identification from Clinical
Dermatological Images [65.1629311281062]
We consider machine-learning-based malignancy prediction and lesion identification from clinical dermatological images.
We first identify all lesions present in the image regardless of sub-type or likelihood of malignancy, then it estimates their likelihood of malignancy, and through aggregation, it also generates an image-level likelihood of malignancy.
arXiv Detail & Related papers (2021-04-02T20:52:05Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
We propose itvariational knowledge distillation (VKD), which is a new probabilistic inference framework for disease classification based on X-rays.
We demonstrate the effectiveness of our method on three public benchmark datasets with paired X-ray images and EHRs.
arXiv Detail & Related papers (2021-03-19T14:13:56Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Convolutional-LSTM for Multi-Image to Single Output Medical Prediction [55.41644538483948]
A common scenario in developing countries is to have the volume metadata lost due multiple reasons.
It is possible to get a multi-image to single diagnostic model which mimics human doctor diagnostic process.
arXiv Detail & Related papers (2020-10-20T04:30:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.