Efficient Network Automatic Relevance Determination
- URL: http://arxiv.org/abs/2506.12352v1
- Date: Sat, 14 Jun 2025 05:20:25 GMT
- Title: Efficient Network Automatic Relevance Determination
- Authors: Hongwei Zhang, Ziqi Ye, Xinyuan Wang, Xin Guo, Zenglin Xu, Yuan Cheng, Zixin Hu, Yuan Qi,
- Abstract summary: Network Automatic Relevance Determination (NARD) is an extension of ARD for linearly probabilistic models.<n>NARD simultaneously model sparse relationships between inputs $X in mathbb Rd times N$ and outputs $Y in mathbb Rm times N$.
- Score: 30.611086842690426
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose Network Automatic Relevance Determination (NARD), an extension of ARD for linearly probabilistic models, to simultaneously model sparse relationships between inputs $X \in \mathbb R^{d \times N}$ and outputs $Y \in \mathbb R^{m \times N}$, while capturing the correlation structure among the $Y$. NARD employs a matrix normal prior which contains a sparsity-inducing parameter to identify and discard irrelevant features, thereby promoting sparsity in the model. Algorithmically, it iteratively updates both the precision matrix and the relationship between $Y$ and the refined inputs. To mitigate the computational inefficiencies of the $\mathcal O(m^3 + d^3)$ cost per iteration, we introduce Sequential NARD, which evaluates features sequentially, and a Surrogate Function Method, leveraging an efficient approximation of the marginal likelihood and simplifying the calculation of determinant and inverse of an intermediate matrix. Combining the Sequential update with the Surrogate Function method further reduces computational costs. The computational complexity per iteration for these three methods is reduced to $\mathcal O(m^3+p^3)$, $\mathcal O(m^3 + d^2)$, $\mathcal O(m^3+p^2)$, respectively, where $p \ll d$ is the final number of features in the model. Our methods demonstrate significant improvements in computational efficiency with comparable performance on both synthetic and real-world datasets.
Related papers
- Obtaining Lower Query Complexities through Lightweight Zeroth-Order Proximal Gradient Algorithms [65.42376001308064]
We propose two variance reduced ZO estimators for complex gradient problems.
We improve the state-of-the-art function complexities from $mathcalOleft(minfracdn1/2epsilon2, fracdepsilon3right)$ to $tildecalOleft(fracdepsilon2right)$.
arXiv Detail & Related papers (2024-10-03T15:04:01Z) - Inverting the Leverage Score Gradient: An Efficient Approximate Newton Method [10.742859956268655]
This paper aims to recover the intrinsic model parameters given the leverage scores gradient.
We specifically scrutinize the inversion of the leverage score gradient, denoted as $g(x)$.
arXiv Detail & Related papers (2024-08-21T01:39:42Z) - Stochastic Optimization for Non-convex Problem with Inexact Hessian
Matrix, Gradient, and Function [99.31457740916815]
Trust-region (TR) and adaptive regularization using cubics have proven to have some very appealing theoretical properties.
We show that TR and ARC methods can simultaneously provide inexact computations of the Hessian, gradient, and function values.
arXiv Detail & Related papers (2023-10-18T10:29:58Z) - Nearly Minimax Optimal Reinforcement Learning for Linear Markov Decision
Processes [80.89852729380425]
We propose the first computationally efficient algorithm that achieves the nearly minimax optimal regret $tilde O(dsqrtH3K)$.
Our work provides a complete answer to optimal RL with linear MDPs, and the developed algorithm and theoretical tools may be of independent interest.
arXiv Detail & Related papers (2022-12-12T18:58:59Z) - Statistical Inference of Constrained Stochastic Optimization via Sketched Sequential Quadratic Programming [53.63469275932989]
We consider online statistical inference of constrained nonlinear optimization problems.<n>We apply the Sequential Quadratic Programming (StoSQP) method to solve these problems.
arXiv Detail & Related papers (2022-05-27T00:34:03Z) - Kernel Packet: An Exact and Scalable Algorithm for Gaussian Process
Regression with Mat\'ern Correlations [23.560067934682294]
We develop an exact and scalable algorithm for one-dimensional Gaussian process regression with Mat'ern correlations.
The proposed algorithm is significantly superior to the existing alternatives in both the computational time and predictive accuracy.
arXiv Detail & Related papers (2022-03-07T03:30:35Z) - Computationally Efficient Approximations for Matrix-based Renyi's
Entropy [33.72108955447222]
Recently developed matrix based Renyi's entropy enables measurement of information in data.
computation of such quantity involves the trace operator on a PSD matrix $G$ to power $alpha$(i.e., $tr(Galpha)$.
We present computationally efficient approximations to this new entropy functional that can reduce its complexity to even significantly less than $O(n2)$.
arXiv Detail & Related papers (2021-12-27T14:59:52Z) - Mixability made efficient: Fast online multiclass logistic regression [68.8204255655161]
We show that mixability can be a powerful tool to obtain algorithms with optimal regret.
The resulting methods often suffer from high computational complexity which has reduced their practical applicability.
arXiv Detail & Related papers (2021-10-08T08:22:05Z) - An Online Riemannian PCA for Stochastic Canonical Correlation Analysis [37.8212762083567]
We present an efficient algorithm (RSG+) for canonical correlation analysis (CCA) using a reparametrization of the projection matrices.
While the paper primarily focuses on the formulation and technical analysis of its properties, our experiments show that the empirical behavior on common datasets is quite promising.
arXiv Detail & Related papers (2021-06-08T23:38:29Z) - Finding Global Minima via Kernel Approximations [90.42048080064849]
We consider the global minimization of smooth functions based solely on function evaluations.
In this paper, we consider an approach that jointly models the function to approximate and finds a global minimum.
arXiv Detail & Related papers (2020-12-22T12:59:30Z) - Learning to extrapolate using continued fractions: Predicting the
critical temperature of superconductor materials [5.905364646955811]
In the field of Artificial Intelligence (AI) and Machine Learning (ML), the approximation of unknown target functions $y=f(mathbfx)$ is a common objective.
We refer to $S$ as the training set and aim to identify a low-complexity mathematical model that can effectively approximate this target function for new instances $mathbfx$.
arXiv Detail & Related papers (2020-11-27T04:57:40Z) - List-Decodable Mean Estimation in Nearly-PCA Time [50.79691056481693]
We study the fundamental task of list-decodable mean estimation in high dimensions.
Our algorithm runs in time $widetildeO(ndk)$ for all $k = O(sqrtd) cup Omega(d)$, where $n$ is the size of the dataset.
A variant of our algorithm has runtime $widetildeO(ndk)$ for all $k$, at the expense of an $O(sqrtlog k)$ factor in the recovery guarantee
arXiv Detail & Related papers (2020-11-19T17:21:37Z) - On Function Approximation in Reinforcement Learning: Optimism in the
Face of Large State Spaces [208.67848059021915]
We study the exploration-exploitation tradeoff at the core of reinforcement learning.
In particular, we prove that the complexity of the function class $mathcalF$ characterizes the complexity of the function.
Our regret bounds are independent of the number of episodes.
arXiv Detail & Related papers (2020-11-09T18:32:22Z) - Variational Orthogonal Features [29.636483122130027]
We show that for certain priors, features can be defined that remove the $mathcalO(M3)$ cost of computing a minibatch estimate of an evidence lower bound (ELBO)
We present a construction of features for any stationary prior kernel that allow for computation of an unbiased estimator to the ELBO using $T$ Monte Carlo samples in $mathcalO(tildeNT+M2T)$ and in $mathcalO(tildeNT+MT)$ with an additional approximation.
arXiv Detail & Related papers (2020-06-23T17:18:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.