Path-specific effects for pulse-oximetry guided decisions in critical care
- URL: http://arxiv.org/abs/2506.12371v1
- Date: Sat, 14 Jun 2025 06:45:53 GMT
- Title: Path-specific effects for pulse-oximetry guided decisions in critical care
- Authors: Kevin Zhang, Yonghan Jung, Divyat Mahajan, Karthikeyan Shanmugam, Shalmali Joshi,
- Abstract summary: This study causally investigates how racial discrepancies in oximetry measurements affect invasive ventilation in ICU settings.<n>We employ a causal inference-based approach using path-specific effects to isolate the impact of bias by race on clinical decision-making.
- Score: 22.98557361265164
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Identifying and measuring biases associated with sensitive attributes is a crucial consideration in healthcare to prevent treatment disparities. One prominent issue is inaccurate pulse oximeter readings, which tend to overestimate oxygen saturation for dark-skinned patients and misrepresent supplemental oxygen needs. Most existing research has revealed statistical disparities linking device errors to patient outcomes in intensive care units (ICUs) without causal formalization. In contrast, this study causally investigates how racial discrepancies in oximetry measurements affect invasive ventilation in ICU settings. We employ a causal inference-based approach using path-specific effects to isolate the impact of bias by race on clinical decision-making. To estimate these effects, we leverage a doubly robust estimator, propose its self-normalized variant for improved sample efficiency, and provide novel finite-sample guarantees. Our methodology is validated on semi-synthetic data and applied to two large real-world health datasets: MIMIC-IV and eICU. Contrary to prior work, our analysis reveals minimal impact of racial discrepancies on invasive ventilation rates. However, path-specific effects mediated by oxygen saturation disparity are more pronounced on ventilation duration, and the severity differs by dataset. Our work provides a novel and practical pipeline for investigating potential disparities in the ICU and, more crucially, highlights the necessity of causal methods to robustly assess fairness in decision-making.
Related papers
- Statistical Learning for Heterogeneous Treatment Effects: Pretraining, Prognosis, and Prediction [40.96453902709292]
We propose pretraining strategies that leverage a phenomenon in real-world applications.<n>In medicine, components of the same biological signaling pathways frequently influence both baseline risk and treatment response.<n>We use this structure to incorporate "side information" and develop models that can exploit synergies between risk prediction and causal effect estimation.
arXiv Detail & Related papers (2025-05-01T05:12:14Z) - Quantifying Aleatoric Uncertainty of the Treatment Effect: A Novel Orthogonal Learner [72.20769640318969]
Estimating causal quantities from observational data is crucial for understanding the safety and effectiveness of medical treatments.<n>Medical practitioners require not only estimating averaged causal quantities, but also understanding the randomness of the treatment effect as a random variable.<n>This randomness is referred to as aleatoric uncertainty and is necessary for understanding the probability of benefit from treatment or quantiles of the treatment effect.
arXiv Detail & Related papers (2024-11-05T18:14:49Z) - A Bayesian Classification Trees Approach to Treatment Effect Variation with Noncompliance [0.5356944479760104]
Estimating varying treatment effects in randomized trials with noncompliance is inherently challenging.
Existing flexible machine learning methods are highly sensitive to the weak instruments problem.
We present a Bayesian Causal Forest model for binary response variables in scenarios with noncompliance.
arXiv Detail & Related papers (2024-08-14T18:33:55Z) - Individualized Multi-Treatment Response Curves Estimation using RBF-net with Shared Neurons [1.1119247609126184]
Our non-parametric modeling of the response curves relies on radial basis function (RBF)-nets with shared hidden neurons.
Applying our proposed method to MIMIC data, we obtain several interesting findings related to the impact of different treatment strategies on the length of ICU stay and 12-hour SOFA score for sepsis patients who are home-discharged.
arXiv Detail & Related papers (2024-01-29T21:13:01Z) - Benchmarking Heterogeneous Treatment Effect Models through the Lens of
Interpretability [82.29775890542967]
Estimating personalized effects of treatments is a complex, yet pervasive problem.
Recent developments in the machine learning literature on heterogeneous treatment effect estimation gave rise to many sophisticated, but opaque, tools.
We use post-hoc feature importance methods to identify features that influence the model's predictions.
arXiv Detail & Related papers (2022-06-16T17:59:05Z) - Partial Identification of Dose Responses with Hidden Confounders [25.468473751289036]
Inferring causal effects of continuous-valued treatments from observational data is a crucial task.
We present novel methodology to bound both average and conditional average continuous-valued treatment-effect estimates.
We apply our method to a real-world observational case study to demonstrate the value of identifying dose-dependent causal effects.
arXiv Detail & Related papers (2022-04-24T07:02:21Z) - Treatment Effect Risk: Bounds and Inference [58.442274475425144]
Since the average treatment effect measures the change in social welfare, even if positive, there is a risk of negative effect on, say, some 10% of the population.
In this paper we consider how to nonetheless assess this important risk measure, formalized as the conditional value at risk (CVaR) of the ITE distribution.
Some bounds can also be interpreted as summarizing a complex CATE function into a single metric and are of interest independently of being a bound.
arXiv Detail & Related papers (2022-01-15T17:21:26Z) - SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event
Data [83.50281440043241]
We study the problem of inferring heterogeneous treatment effects from time-to-event data.
We propose a novel deep learning method for treatment-specific hazard estimation based on balancing representations.
arXiv Detail & Related papers (2021-10-26T20:13:17Z) - A standardized framework for risk-based assessment of treatment effect
heterogeneity in observational healthcare databases [60.07352590494571]
The aim of this study was to extend this approach to the observational setting using a standardized scalable framework.
We demonstrate our framework by evaluating the effect of angiotensin-converting enzyme (ACE) inhibitors versus beta blockers on three efficacy and six safety outcomes.
arXiv Detail & Related papers (2020-10-13T14:48:31Z) - Perfusion Imaging: A Data Assimilation Approach [18.418067945495203]
Perfusion imaging (PI) is clinically used to assess strokes and brain tumors.
Contrast-agent free approaches, for example, based on intravoxel incoherent motion, also exist, but are so far not routinely used clinically.
These methods rely on estimating on the arterial input function (AIF) to approximately model tissue perfusion, neglecting spatial dependencies, and reliably estimating the AIF is also non-trivial.
In this work we propose a data-assimilation approach (PIANO) which estimates the velocity and diffusion fields of an advection-diffusion model that best explains the contrast dynamics.
arXiv Detail & Related papers (2020-09-06T18:44:44Z) - Enabling Counterfactual Survival Analysis with Balanced Representations [64.17342727357618]
Survival data are frequently encountered across diverse medical applications, i.e., drug development, risk profiling, and clinical trials.
We propose a theoretically grounded unified framework for counterfactual inference applicable to survival outcomes.
arXiv Detail & Related papers (2020-06-14T01:15:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.