論文の概要: Language Surgery in Multilingual Large Language Models
- arxiv url: http://arxiv.org/abs/2506.12450v1
- Date: Sat, 14 Jun 2025 11:09:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-17 17:28:46.204657
- Title: Language Surgery in Multilingual Large Language Models
- Title(参考訳): 多言語大言語モデルにおける言語手術
- Authors: Joanito Agili Lopo, Muhammad Ravi Shulthan Habibi, Tack Hwa Wong, Muhammad Ilham Ghozali, Fajri Koto, Genta Indra Winata, Peerat Limkonchotiwat, Alham Fikri Aji, Samuel Cahyawijaya,
- Abstract要約: 大規模言語モデル(LLM)はタスクや言語にまたがる顕著な一般化機能を示している。
本稿では, LLMにおける自然に出現する表現アライメント, 特に中層における表現アライメントについて検討する。
本稿では,言語間言語制御の高精度化と言語混乱を軽減するため,ITLC(Inference-Time Language Control)を提案する。
- 参考スコア(独自算出の注目度): 32.77326546076424
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have demonstrated remarkable generalization capabilities across tasks and languages, revolutionizing natural language processing. This paper investigates the naturally emerging representation alignment in LLMs, particularly in the middle layers, and its implications for disentangling language-specific and language-agnostic information. We empirically confirm the existence of this alignment, analyze its behavior in comparison to explicitly designed alignment models, and demonstrate its potential for language-specific manipulation without semantic degradation. Building on these findings, we propose Inference-Time Language Control (ITLC), a novel method that leverages latent injection to enable precise cross-lingual language control and mitigate language confusion in LLMs. Our experiments highlight ITLC's strong cross-lingual control capabilities while preserving semantic integrity in target languages. Furthermore, we demonstrate its effectiveness in alleviating the cross-lingual language confusion problem, which persists even in current large-scale LLMs, leading to inconsistent language generation. This work advances our understanding of representation alignment in LLMs and introduces a practical solution for enhancing their cross-lingual performance.
- Abstract(参考訳): 大規模言語モデル(LLM)はタスクや言語にまたがる顕著な一般化機能を示し、自然言語処理に革命をもたらした。
本稿では,中層におけるLLMの自然な表現アライメントと,言語固有の情報や言語に依存しない情報との関連性について検討する。
このアライメントの存在を実証的に確認し、明示的に設計されたアライメントモデルと比較してその振る舞いを分析し、意味的劣化のない言語固有の操作の可能性を示す。
これらの知見に基づいて,LLMにおける言語間の正確な言語制御と言語混同を軽減するために潜時注入を利用した新しい手法である推論時言語制御(ITLC)を提案する。
実験では,ITLCの強い言語間制御能力を強調しながら,対象言語における意味的整合性を維持した。
さらに,現在大規模LLMにおいても継続する言語間混同問題を緩和し,不整合言語生成に繋がる効果を示す。
本研究は,LLMにおける表現アライメントの理解を深め,言語間性能を向上させるための実用的なソリューションを提案する。
関連論文リスト
- The Emergence of Abstract Thought in Large Language Models Beyond Any Language [95.50197866832772]
大規模言語モデル(LLM)は様々な言語で効果的に機能する。
予備的研究では、LLMの隠れた活性化は、英語以外のプロンプトに反応してもしばしば英語に類似している。
近年の結果は多言語のパフォーマンスが強く、他の言語での特定のタスクにおける英語のパフォーマンスを超えている。
論文 参考訳(メタデータ) (2025-06-11T16:00:54Z) - Cross-Lingual Pitfalls: Automatic Probing Cross-Lingual Weakness of Multilingual Large Language Models [55.14276067678253]
本稿では,Large Language Models (LLMs) における言語間関係の弱点を効率的に同定するための新しい手法を提案する。
この手法を用いて16言語で6,000以上のバイリンガルペアからなる新しいデータセットを構築し、最先端のモデルにおいても弱点を明らかにする効果を実証した。
さらに,言語的類似性と言語間の弱点との関係について検討し,言語的関連言語が類似した演奏パターンを共有することを明らかにした。
論文 参考訳(メタデータ) (2025-05-24T12:31:27Z) - When Less Language is More: Language-Reasoning Disentanglement Makes LLMs Better Multilingual Reasoners [111.50503126693444]
言語固有のアブレーションは多言語推論性能を継続的に向上させることを示す。
トレーニング後のアブレーションと比較して、トレーニング不要のアブレーションは、計算オーバーヘッドを最小限に抑えながら、同等または優れた結果が得られる。
論文 参考訳(メタデータ) (2025-05-21T08:35:05Z) - The Hidden Space of Safety: Understanding Preference-Tuned LLMs in Multilingual context [0.9130277390156759]
アライメントチューニングにより、大きな言語モデルは、推論、命令追従、有害な世代を最小化できる。
広く展開されているにもかかわらず、これらのモデルはモノリンガルバイアスを示し、言語間のアライメントの有効性に関する懸念を提起する。
現在のアライメント手法は主に英語に重点を置いており、アライメント機構が多言語設定にどのように一般化するかははっきりしない。
論文 参考訳(メタデータ) (2025-04-03T15:46:46Z) - Linguistic Blind Spots of Large Language Models [14.755831733659699]
言語アノテーションタスクにおける最近の大規模言語モデル(LLM)の性能について検討する。
近年の LLM は言語クエリに対処する上で有効性が限られており,言語学的に複雑な入力に苦しむことが多い。
この結果から,LLMの設計・開発における今後の進歩を示唆する知見が得られた。
論文 参考訳(メタデータ) (2025-03-25T01:47:13Z) - Large Language Models are Easily Confused: A Quantitative Metric, Security Implications and Typological Analysis [5.029635172046762]
言語融合(Language Confusion)とは、大言語モデル(LLM)が所望の言語でもなく、文脈的に適切な言語でもテキストを生成する現象である。
我々は,この混乱を計測し定量化するために設計された,新しい計量であるLanguage Confusion Entropyを導入する。
論文 参考訳(メタデータ) (2024-10-17T05:43:30Z) - Lens: Rethinking Multilingual Enhancement for Large Language Models [70.85065197789639]
大規模言語モデル(LLM)における多言語機能向上のための新しいアプローチであるLensを提案する。
Lensは2つの部分空間で機能する: 言語に依存しない部分空間で、ターゲット言語と中心言語を一致させて強力な意味表現を継承する部分空間、言語固有の部分空間で、ターゲット言語と中心言語を分離して言語的特異性を保存する部分空間である。
レンズは、モデルの英語能力を維持しながら、多言語のパフォーマンスを著しく向上させ、既存の訓練後のアプローチと比べて計算コストの低い結果を得る。
論文 参考訳(メタデータ) (2024-10-06T08:51:30Z) - Getting More from Less: Large Language Models are Good Spontaneous Multilingual Learners [67.85635044939836]
大きな言語モデル(LLM)は印象的な言語機能を示している。
本研究では,LLMの自然多言語アライメント改善について検討する。
質問翻訳データ(すなわち注釈付き回答なし)に基づいて学習したLLMは、英語と幅広い言語との整合を促進できることがわかった。
論文 参考訳(メタデータ) (2024-05-22T16:46:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。