論文の概要: Binarization-Aware Adjuster: Bridging Continuous Optimization and Binary Inference in Edge Detection
- arxiv url: http://arxiv.org/abs/2506.12460v1
- Date: Sat, 14 Jun 2025 11:56:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-17 17:28:46.212608
- Title: Binarization-Aware Adjuster: Bridging Continuous Optimization and Binary Inference in Edge Detection
- Title(参考訳): バイナリ化対応調整器:エッジ検出におけるブリッジ連続最適化とバイナリ推論
- Authors: Hao Shu,
- Abstract要約: 画像エッジ検出(ED)は、トレーニングと推論の根本的なミスマッチに直面します。
本稿では,バイナリ化アウェア (BAA) を設計するための理論的手法を提案する。
BAAは二項化の挙動を勾配に基づく最適化に明示的に組み入れている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image edge detection (ED) faces a fundamental mismatch between training and inference: models are trained using continuous-valued outputs but evaluated using binary predictions. This misalignment, caused by the non-differentiability of binarization, weakens the link between learning objectives and actual task performance. In this paper, we propose a theoretical method to design a Binarization-Aware Adjuster (BAA), which explicitly incorporates binarization behavior into gradient-based optimization. At the core of BAA is a novel loss adjustment mechanism based on a Distance Weight Function (DWF), which reweights pixel-wise contributions according to their correctness and proximity to the decision boundary. This emphasizes decision-critical regions while down-weighting less influential ones. We also introduce a self-adaptive procedure to estimate the optimal binarization threshold for BAA, further aligning training dynamics with inference behavior. Extensive experiments across various architectures and datasets demonstrate the effectiveness of our approach. Beyond ED, BAA offers a generalizable strategy for bridging the gap between continuous optimization and discrete evaluation in structured prediction tasks.
- Abstract(参考訳): 画像エッジ検出(ED)は、トレーニングと推論の基本的なミスマッチに直面している。
このミスアライメントは、二項化の非微分性に起因するもので、学習目標と実際のタスクパフォーマンスとの関係を弱める。
本稿では,二項化動作を勾配に基づく最適化に明示的に組み込む二項化認識調整器(BAA)を設計するための理論的手法を提案する。
BAAの中核には、距離重み関数(DWF)に基づく新たな損失調整機構があり、その正しさと決定境界に近接した画素ワイドなコントリビューションを再重み付けする。
これにより決定クリティカルな領域が強調される一方で、影響力の低い領域も強調される。
また,BAAの最適バイナライゼーション閾値を推定する自己適応的手法を導入し,推論動作とトレーニングダイナミクスを整合させる。
さまざまなアーキテクチャやデータセットにわたる大規模な実験は、私たちのアプローチの有効性を示しています。
ED以外にも、BAAは構造化予測タスクにおける連続最適化と離散評価のギャップを埋めるための一般化可能な戦略を提供している。
関連論文リスト
- Contextually Entangled Gradient Mapping for Optimized LLM Comprehension [0.0]
Entually Entangled Gradient Mapping (CEGM)は、勾配最適化に対する新しいアプローチを導入する。
勾配を分離された数値エンティティではなく、コンテキスト依存の動的キャリアとして扱う。
提案手法は,既存の最適化戦略において重要なギャップを埋めるものである。
論文 参考訳(メタデータ) (2025-01-28T11:50:35Z) - Learning Dynamic Representations via An Optimally-Weighted Maximum Mean Discrepancy Optimization Framework for Continual Learning [16.10753846850319]
継続的な学習は、モデルを永続的に取得し、保持することを可能にする。
悲惨な忘れ物は モデルパフォーマンスを著しく損なう
本稿では,表現変更に対する罰則を課す,OPMMD(Optimally-Weighted Mean Discrepancy)と呼ばれる新しいフレームワークを紹介する。
論文 参考訳(メタデータ) (2025-01-21T13:33:45Z) - Towards Robust and Interpretable EMG-based Hand Gesture Recognition using Deep Metric Meta Learning [37.21211404608413]
本稿では,意味的かつ解釈可能な表現の作成を監督するために,EMG PRにおける深層メートル法メタラーニングへのシフトを提案する。
我々は、不正確な決定をよりよく拒否する頑健なクラス近接性に基づく信頼度推定器を導出する。
論文 参考訳(メタデータ) (2024-04-17T23:37:50Z) - Towards Continual Learning Desiderata via HSIC-Bottleneck
Orthogonalization and Equiangular Embedding [55.107555305760954]
本稿では,レイヤワイドパラメータのオーバーライトや決定境界の歪みに起因する,概念的にシンプルで効果的な手法を提案する。
提案手法は,ゼロの指数バッファと1.02倍の差が絶対的に優れていても,競争精度が向上する。
論文 参考訳(メタデータ) (2024-01-17T09:01:29Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
本稿では,ニューラルネットワークを一般化し,トランスフォーマーアーキテクチャを用いて獲得関数を学習する,エンド・ツー・エンドの差別化可能な最初のメタBOフレームワークを提案する。
我々は、この強化学習(RL)によるエンドツーエンドのフレームワークを、ラベル付き取得データの欠如に対処できるようにします。
論文 参考訳(メタデータ) (2023-05-25T10:58:46Z) - Domain Adaptation with Adversarial Training on Penultimate Activations [82.9977759320565]
教師なし領域適応(Unsupervised Domain Adaptation, UDA)の重要な目的は、ラベルなし対象データに対するモデル予測の信頼性を高めることである。
我々は,この戦略が,入力画像や中間特徴に対する敵対的訓練よりも予測信頼性を高める目的と,より効率的で相関性が高いことを示す。
論文 参考訳(メタデータ) (2022-08-26T19:50:46Z) - Bilevel Online Deep Learning in Non-stationary Environment [4.565872584112864]
Bilevel Online Deep Learning (BODL)フレームワークは、双方向最適化戦略とオンラインアンサンブル分類器を組み合わせたフレームワークである。
概念ドリフトが検出されると、BODLアルゴリズムはバイレベル最適化によりモデルパラメータを適応的に更新し、大きなドリフトを回避し、正の転送を促進する。
論文 参考訳(メタデータ) (2022-01-25T11:05:51Z) - Data Augmentation through Expert-guided Symmetry Detection to Improve
Performance in Offline Reinforcement Learning [0.0]
マルコフ決定過程(MDP)の動的モデルのオフライン推定は非自明な作業である。
近年の研究では、密度推定法に依存する専門家誘導パイプラインが、決定論的環境において、この構造を効果的に検出できることが示されている。
学習したMDPを解き、実際の環境に最適化されたポリシーを適用すると、前者の結果が性能改善につながることを示す。
論文 参考訳(メタデータ) (2021-12-18T14:32:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。