論文の概要: Contextually Entangled Gradient Mapping for Optimized LLM Comprehension
- arxiv url: http://arxiv.org/abs/2502.00048v1
- Date: Tue, 28 Jan 2025 11:50:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-09 04:50:39.026479
- Title: Contextually Entangled Gradient Mapping for Optimized LLM Comprehension
- Title(参考訳): 最適LLM理解のためのコンテキスト共役勾配写像
- Authors: Colin Sisate, Alistair Goldfinch, Vincent Waterstone, Sebastian Kingsley, Mariana Blackthorn,
- Abstract要約: Entually Entangled Gradient Mapping (CEGM)は、勾配最適化に対する新しいアプローチを導入する。
勾配を分離された数値エンティティではなく、コンテキスト依存の動的キャリアとして扱う。
提案手法は,既存の最適化戦略において重要なギャップを埋めるものである。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Contextually Entangled Gradient Mapping (CEGM) introduces a new approach to gradient optimization, redefining the relationship between contextual embeddings and gradient updates to enhance semantic coherence and reasoning capabilities in neural architectures. By treating gradients as dynamic carriers of contextual dependencies rather than isolated numerical entities, the proposed methodology bridges critical gaps in existing optimization strategies. The integration of entangled gradient dynamics into a loss regularization framework demonstrated significant improvements in tasks involving long-form reasoning, contextual retention, and adaptability to unseen domains. Experimental evaluations showed that the CEGM-enhanced model consistently outperformed baseline approaches, achieving higher accuracy in token-level predictions and greater resilience to noisy inputs. Practical implementations involved modifications to training pipelines, introducing entanglement layers and dynamic coefficient adjustments that seamlessly align with existing architectures. Results further highlighted reductions in semantic drift during sequential transformations and improvements in embedding coherence across paraphrased sentences, showing the robustness and versatility of the proposed methodology. The findings demonstrate the broader implications of gradient entanglement for both theoretical advancements and practical applications in optimization strategies.
- Abstract(参考訳): CEGM(Contextually Entangled Gradient Mapping)は、ニューラルネットワークにおけるセマンティックコヒーレンスと推論機能を強化するために、コンテキスト埋め込みと勾配更新の関係を再定義する、勾配最適化の新しいアプローチを導入する。
グラデーションを分離された数値エンティティではなく、コンテキスト依存の動的キャリアとして扱うことにより、提案手法は既存の最適化戦略において重要なギャップを埋める。
絡み合った勾配力学を損失正規化フレームワークに統合することで、長期的推論、文脈保持、目に見えない領域への適応性といったタスクが大幅に改善された。
実験により,CEGM強化モデルは,トークンレベルの予測精度の向上,ノイズ入力に対するレジリエンスの向上など,ベースラインアプローチよりも一貫して優れていた。
実践的な実装には、パイプラインのトレーニングの変更、絡み合い層の導入、既存のアーキテクチャとシームレスに整合する動的係数調整が含まれていた。
その結果, 逐次変換における意味的ドリフトの低減と, パラフレーズ付き文間のコヒーレンス埋め込みの改善が強調され, 提案手法の堅牢性と汎用性を示した。
この結果は、最適化戦略における理論的進歩と実践的応用の両方に対する勾配絡みの広範な意味を示している。
関連論文リスト
- Structured Convergence in Large Language Model Representations via Hierarchical Latent Space Folding [0.0]
高次元潜在空間におけるトークン表現は、しばしば冗長性を示し、計算効率を制限し、モデル層全体の構造的コヒーレンスを低減する。
本稿では,学習した埋め込みにおいて,マルチスケールの組織を強制する構造的変換機構を提案する。
経験的評価は、層間の表現分散の減少を示し、より安定したパープレキシティ分布に寄与し、テキスト生成における予測信頼性を高める。
論文 参考訳(メタデータ) (2025-02-13T04:01:54Z) - Contextual Gradient Flow Modeling for Large Language Model Generalization in Multi-Scale Feature Spaces [0.0]
マルチスケールの文脈調整を取り入れた構造的勾配改善フレームワークが導入された。
重み更新の階層的な調整は、従来のバックプロパゲーションの代替となった。
構造最適化戦略は不均一なテキスト分布の適応性を保ちながらオーバーフィッティングを緩和する。
論文 参考訳(メタデータ) (2025-02-06T22:57:40Z) - Context-Preserving Gradient Modulation for Large Language Models: A Novel Approach to Semantic Consistency in Long-Form Text Generation [0.19791587637442667]
文脈的関連性に応じてパラメータ更新を動的に調整する新しい変調勾配法が導入された。
提案手法は,計算オーバーヘッドを著しく抑えることなく,モデル生成物語の安定性を向上させる。
論文 参考訳(メタデータ) (2025-02-05T22:13:06Z) - Structural Embedding Projection for Contextual Large Language Model Inference [0.0]
構造化埋め込み変換は、言語モデル推論の効率性と一貫性を高めるための有望なアプローチを提供する。
構造埋め込み射影 (Structure Embedding Projection, SEP) の数学的定式化により、埋め込み空間は構造化された文脈関係を捉えることができる。
語彙の多様性に対するSEPの影響は、埋め込み修飾がモデルの語彙使用に影響を与えることを示唆している。
論文 参考訳(メタデータ) (2025-01-31T00:46:21Z) - Context-Aware Neural Gradient Mapping for Fine-Grained Instruction Processing [0.0]
本稿では、動的勾配調整機構を導入し、文脈埋め込みを直接最適化プロセスに組み込む。
提案するフレームワークは,精度,ノイズに対する堅牢性,計算効率など,さまざまな指標のベースラインモデルよりも一貫して優れている。
文脈固有の埋め込みの統合により、言語をより複雑な理解が可能となり、様々な言語現象を扱うモデルの能力が向上する。
論文 参考訳(メタデータ) (2025-01-24T21:49:24Z) - Unleashing Network Potentials for Semantic Scene Completion [50.95486458217653]
本稿では,新しいSSCフレームワーク - Adrial Modality Modulation Network (AMMNet)を提案する。
AMMNetは、モダリティ間の勾配流の相互依存性を可能にするクロスモーダル変調と、動的勾配競争を利用するカスタマイズされた逆トレーニングスキームの2つのコアモジュールを導入している。
AMMNetは最先端のSSC法よりも大きなマージンで優れていた。
論文 参考訳(メタデータ) (2024-03-12T11:48:49Z) - Reparameterization through Spatial Gradient Scaling [69.27487006953852]
リパラメータ化は、学習中に畳み込み層を等価なマルチブランチ構造に変換することによって、ディープニューラルネットワークの一般化を改善することを目的としている。
本稿では,畳み込みネットワークにおける重み間の学習焦点を再分配する空間勾配スケーリング手法を提案する。
論文 参考訳(メタデータ) (2023-03-05T17:57:33Z) - Revisiting GANs by Best-Response Constraint: Perspective, Methodology,
and Application [49.66088514485446]
ベストレスポンス制約(Best-Response Constraint、BRC)は、ジェネレータのディスクリミネータへの依存性を明示的に定式化する一般的な学習フレームワークである。
モチベーションや定式化の相違があっても, フレキシブルBRC法により, 様々なGANが一様に改善できることが示される。
論文 参考訳(メタデータ) (2022-05-20T12:42:41Z) - Cogradient Descent for Bilinear Optimization [124.45816011848096]
双線形問題に対処するために、CoGDアルゴリズム(Cogradient Descent Algorithm)を導入する。
一方の変数は、他方の変数との結合関係を考慮し、同期勾配降下をもたらす。
本アルゴリズムは,空間的制約下での1変数の問題を解くために応用される。
論文 参考訳(メタデータ) (2020-06-16T13:41:54Z) - Dynamic Hierarchical Mimicking Towards Consistent Optimization
Objectives [73.15276998621582]
一般化能力を高めたCNN訓練を推進するための汎用的特徴学習機構を提案する。
DSNに部分的にインスパイアされた私たちは、ニューラルネットワークの中間層から微妙に設計されたサイドブランチをフォークしました。
カテゴリ認識タスクとインスタンス認識タスクの両方の実験により,提案手法の大幅な改善が示された。
論文 参考訳(メタデータ) (2020-03-24T09:56:13Z) - Disentangling Adaptive Gradient Methods from Learning Rates [65.0397050979662]
適応的勾配法が学習率のスケジュールとどのように相互作用するかを、より深く検討する。
我々は、更新の規模をその方向から切り離す"グラフティング"実験を導入する。
適応勾配法の一般化に関する経験的および理論的考察を示す。
論文 参考訳(メタデータ) (2020-02-26T21:42:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。