論文の概要: Contextually Entangled Gradient Mapping for Optimized LLM Comprehension
- arxiv url: http://arxiv.org/abs/2502.00048v1
- Date: Tue, 28 Jan 2025 11:50:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-09 04:50:39.026479
- Title: Contextually Entangled Gradient Mapping for Optimized LLM Comprehension
- Title(参考訳): 最適LLM理解のためのコンテキスト共役勾配写像
- Authors: Colin Sisate, Alistair Goldfinch, Vincent Waterstone, Sebastian Kingsley, Mariana Blackthorn,
- Abstract要約: Entually Entangled Gradient Mapping (CEGM)は、勾配最適化に対する新しいアプローチを導入する。
勾配を分離された数値エンティティではなく、コンテキスト依存の動的キャリアとして扱う。
提案手法は,既存の最適化戦略において重要なギャップを埋めるものである。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Contextually Entangled Gradient Mapping (CEGM) introduces a new approach to gradient optimization, redefining the relationship between contextual embeddings and gradient updates to enhance semantic coherence and reasoning capabilities in neural architectures. By treating gradients as dynamic carriers of contextual dependencies rather than isolated numerical entities, the proposed methodology bridges critical gaps in existing optimization strategies. The integration of entangled gradient dynamics into a loss regularization framework demonstrated significant improvements in tasks involving long-form reasoning, contextual retention, and adaptability to unseen domains. Experimental evaluations showed that the CEGM-enhanced model consistently outperformed baseline approaches, achieving higher accuracy in token-level predictions and greater resilience to noisy inputs. Practical implementations involved modifications to training pipelines, introducing entanglement layers and dynamic coefficient adjustments that seamlessly align with existing architectures. Results further highlighted reductions in semantic drift during sequential transformations and improvements in embedding coherence across paraphrased sentences, showing the robustness and versatility of the proposed methodology. The findings demonstrate the broader implications of gradient entanglement for both theoretical advancements and practical applications in optimization strategies.
- Abstract(参考訳): CEGM(Contextually Entangled Gradient Mapping)は、ニューラルネットワークにおけるセマンティックコヒーレンスと推論機能を強化するために、コンテキスト埋め込みと勾配更新の関係を再定義する、勾配最適化の新しいアプローチを導入する。
グラデーションを分離された数値エンティティではなく、コンテキスト依存の動的キャリアとして扱うことにより、提案手法は既存の最適化戦略において重要なギャップを埋める。
絡み合った勾配力学を損失正規化フレームワークに統合することで、長期的推論、文脈保持、目に見えない領域への適応性といったタスクが大幅に改善された。
実験により,CEGM強化モデルは,トークンレベルの予測精度の向上,ノイズ入力に対するレジリエンスの向上など,ベースラインアプローチよりも一貫して優れていた。
実践的な実装には、パイプラインのトレーニングの変更、絡み合い層の導入、既存のアーキテクチャとシームレスに整合する動的係数調整が含まれていた。
その結果, 逐次変換における意味的ドリフトの低減と, パラフレーズ付き文間のコヒーレンス埋め込みの改善が強調され, 提案手法の堅牢性と汎用性を示した。
この結果は、最適化戦略における理論的進歩と実践的応用の両方に対する勾配絡みの広範な意味を示している。
関連論文リスト
- Towards Differentiable Multilevel Optimization: A Gradient-Based Approach [1.6114012813668932]
本稿では,多レベル最適化のための新しい勾配に基づくアプローチを提案する。
本手法は解の精度と収束速度を両立させながら計算複雑性を著しく低減する。
私たちの知る限りでは、これは暗黙の微分の一般的なバージョンを提供する最初のアルゴリズムの1つである。
論文 参考訳(メタデータ) (2024-10-15T06:17:59Z) - Unleashing Network Potentials for Semantic Scene Completion [50.95486458217653]
本稿では,新しいSSCフレームワーク - Adrial Modality Modulation Network (AMMNet)を提案する。
AMMNetは、モダリティ間の勾配流の相互依存性を可能にするクロスモーダル変調と、動的勾配競争を利用するカスタマイズされた逆トレーニングスキームの2つのコアモジュールを導入している。
AMMNetは最先端のSSC法よりも大きなマージンで優れていた。
論文 参考訳(メタデータ) (2024-03-12T11:48:49Z) - Beyond Single-Model Views for Deep Learning: Optimization versus
Generalizability of Stochastic Optimization Algorithms [13.134564730161983]
本稿では、勾配降下(SGD)とその変種に着目し、ディープラーニングの最適化に新しいアプローチを採用する。
我々はSGDとその変種がSAMのような平らなミニマと同等の性能を示すことを示した。
本研究は、トレーニング損失とホールドアウト精度の関係、およびSGDとノイズ対応変種の性能について、いくつかの重要な知見を明らかにした。
論文 参考訳(メタデータ) (2024-03-01T14:55:22Z) - Reparameterization through Spatial Gradient Scaling [69.27487006953852]
リパラメータ化は、学習中に畳み込み層を等価なマルチブランチ構造に変換することによって、ディープニューラルネットワークの一般化を改善することを目的としている。
本稿では,畳み込みネットワークにおける重み間の学習焦点を再分配する空間勾配スケーリング手法を提案する。
論文 参考訳(メタデータ) (2023-03-05T17:57:33Z) - Revisiting GANs by Best-Response Constraint: Perspective, Methodology,
and Application [49.66088514485446]
ベストレスポンス制約(Best-Response Constraint、BRC)は、ジェネレータのディスクリミネータへの依存性を明示的に定式化する一般的な学習フレームワークである。
モチベーションや定式化の相違があっても, フレキシブルBRC法により, 様々なGANが一様に改善できることが示される。
論文 参考訳(メタデータ) (2022-05-20T12:42:41Z) - The Gradient Convergence Bound of Federated Multi-Agent Reinforcement
Learning with Efficient Communication [20.891460617583302]
連立学習パラダイムにおける協調的意思決定のための独立強化学習(IRL)の検討
FLはエージェントとリモート中央サーバ間の過剰な通信オーバーヘッドを生成する。
本稿では,システムの実用性向上のための2つの高度な最適化手法を提案する。
論文 参考訳(メタデータ) (2021-03-24T07:21:43Z) - A Differential Game Theoretic Neural Optimizer for Training Residual
Networks [29.82841891919951]
本稿では、残差接続と畳み込み層の両方を受け入れる一般化微分動的プログラミング(DDP)ニューラルアーキテクチャを提案する。
得られた最適制御表現は、トレーニング残余ネットワークを、状態拡張システム上での協調的軌道最適化と解釈できるゲーム論的視点を許容する。
論文 参考訳(メタデータ) (2020-07-17T10:19:17Z) - Cogradient Descent for Bilinear Optimization [124.45816011848096]
双線形問題に対処するために、CoGDアルゴリズム(Cogradient Descent Algorithm)を導入する。
一方の変数は、他方の変数との結合関係を考慮し、同期勾配降下をもたらす。
本アルゴリズムは,空間的制約下での1変数の問題を解くために応用される。
論文 参考訳(メタデータ) (2020-06-16T13:41:54Z) - Dynamic Hierarchical Mimicking Towards Consistent Optimization
Objectives [73.15276998621582]
一般化能力を高めたCNN訓練を推進するための汎用的特徴学習機構を提案する。
DSNに部分的にインスパイアされた私たちは、ニューラルネットワークの中間層から微妙に設計されたサイドブランチをフォークしました。
カテゴリ認識タスクとインスタンス認識タスクの両方の実験により,提案手法の大幅な改善が示された。
論文 参考訳(メタデータ) (2020-03-24T09:56:13Z) - Disentangling Adaptive Gradient Methods from Learning Rates [65.0397050979662]
適応的勾配法が学習率のスケジュールとどのように相互作用するかを、より深く検討する。
我々は、更新の規模をその方向から切り離す"グラフティング"実験を導入する。
適応勾配法の一般化に関する経験的および理論的考察を示す。
論文 参考訳(メタデータ) (2020-02-26T21:42:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。