論文の概要: AgentOrchestra: A Hierarchical Multi-Agent Framework for General-Purpose Task Solving
- arxiv url: http://arxiv.org/abs/2506.12508v3
- Date: Wed, 13 Aug 2025 12:50:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-14 20:42:00.532941
- Title: AgentOrchestra: A Hierarchical Multi-Agent Framework for General-Purpose Task Solving
- Title(参考訳): AgentOrchestra: 汎用タスク解決のための階層型マルチエージェントフレームワーク
- Authors: Wentao Zhang, Liang Zeng, Yuzhen Xiao, Yongcong Li, Ce Cui, Yilei Zhao, Rui Hu, Yang Liu, Yahui Zhou, Bo An,
- Abstract要約: 本稿では,汎用タスク解決のための階層型マルチエージェントフレームワークであるAgentOrchestraを紹介する。
複雑な目的を分解し、サブタスクを専門エージェントのチームに委譲する中央計画エージェントが特徴である。
LLMをベースとしたエージェントシステムを評価するために,このフレームワークを3つの広く使用されているベンチマークで評価する。
- 参考スコア(独自算出の注目度): 28.87376403573416
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in agent systems have demonstrated remarkable capabilities in solving both general-purpose and highly complex tasks. However, most current models lack mechanisms for coordinating specialized agents and have limited ability to generalize to new or diverse domains. To this end, we introduce AgentOrchestra, a hierarchical multi-agent framework for general-purpose task solving that integrates high-level planning with modular agent collaboration. Drawing inspiration from a conductor orchestrating a symphony, and grounded in the principles of extensibility, multimodality, modularity, and coordination, it features a central planning agent that decomposes complex objectives and delegates sub-tasks to a team of specialized agents. Each sub-agent is equipped with general programming tools, as well as abilities to tackle a wide range of real-world specific tasks, including data analysis, file operations, web navigation, and interactive reasoning in dynamic multimodal environments. Notably, AgentOrchestra introduces an MCP Manager Agent that enables intelligent evolution through dynamic tool creation, retrieval, and reuse mechanisms, significantly enhancing the system's adaptability and scalability. AgentOrchestra supports flexible orchestration through explicit sub-goal formulation, inter-agent communication, and adaptive role allocation. We evaluate the framework on three widely used benchmarks for assessing LLM-based agent systems. Experimental results show that AgentOrchestra consistently outperforms flat-agent and monolithic baselines in terms of task success rate and adaptability. On the GAIA benchmark testing dataset, AgentOrchestra achieves an average score of 83.39\%, ranking among the top general-purpose agents. These results highlight the effectiveness of hierarchical organization and role specialization in building scalable and general-purpose LLM-based agent systems.
- Abstract(参考訳): エージェントシステムの最近の進歩は、汎用タスクと高度に複雑なタスクの両方を解く際、顕著な能力を示している。
しかし、現在のほとんどのモデルは、特殊エージェントを調整するためのメカニズムがなく、新しいドメインや多様なドメインに一般化する能力に制限がある。
この目的のために,汎用タスク解決のための階層型マルチエージェントフレームワークであるAgentOrchestraを紹介した。
交響楽団を組織する指揮者からインスピレーションを得て、拡張性、マルチモダリティ、モジュラリティ、調整の原則を基礎として、複雑な目的を分解し、特殊エージェントのチームにサブタスクを委譲する中央計画エージェントを特徴としている。
各サブエージェントは、汎用プログラミングツールと、データ分析、ファイル操作、Webナビゲーション、動的マルチモーダル環境におけるインタラクティブ推論など、幅広い現実世界固有のタスクに対処する能力を備えている。
AgentOrchestraは、動的ツールの生成、検索、再利用機構を通じてインテリジェントな進化を可能にするMCP Manager Agentを導入し、システムの適応性とスケーラビリティを大幅に向上させる。
AgentOrchestraは、明示的なサブゴールの定式化、エージェント間通信、アダプティブロールアロケーションを通じて、柔軟なオーケストレーションをサポートする。
LLMをベースとしたエージェントシステムを評価するために,このフレームワークを3つの広く使用されているベンチマークで評価する。
実験の結果,AgentOrchestraはタスク成功率と適応性の観点から,フラットエージェントとモノリシックベースラインを一貫して上回っていることがわかった。
GAIAベンチマークテストデータセットでは、AgensOrchestraが平均スコア83.39\%を獲得し、上位の汎用エージェントにランクインしている。
これらの結果は、スケーラブルで汎用的なLCMエージェントシステムを構築する上で、階層的組織の有効性と役割の専門化を強調している。
関連論文リスト
- Parallelism Meets Adaptiveness: Scalable Documents Understanding in Multi-Agent LLM Systems [0.8437187555622164]
大規模言語モデル(LLM)エージェントは、協調的なタスク補完の約束が増していることを示している。
既存のマルチエージェントフレームワークは、静的で固定されたロールと限定的なエージェント間通信に依存していることが多い。
本稿では,3つのコア機構による適応性を実現するための協調フレームワークを提案する。
論文 参考訳(メタデータ) (2025-07-22T22:42:51Z) - AnyMAC: Cascading Flexible Multi-Agent Collaboration via Next-Agent Prediction [70.60422261117816]
本稿では,グラフ構造ではなくシーケンシャル構造を用いて,マルチエージェント協調を再考するフレームワークを提案する。
提案手法は,(1)各ステップで最も適したエージェントロールを選択するNext-Agent Predictionと,(2)各エージェントが前ステップから関連する情報にアクセスできるようにするNext-Context Selectionの2つの重要な方向に焦点を当てる。
論文 参考訳(メタデータ) (2025-06-21T18:34:43Z) - Cross-Task Experiential Learning on LLM-based Multi-Agent Collaboration [63.90193684394165]
マルチエージェント・クロスタスク体験学習(MAEL)は,LSM駆動型エージェントに明示的なクロスタスク学習と経験蓄積を付与する新しいフレームワークである。
経験的学習フェーズでは、タスク解決ワークフローの各ステップの品質を定量化し、その結果の報酬を記憶する。
推論中、エージェントは、各推論ステップの有効性を高めるために、いくつかの例として、高頻度のタスク関連体験を検索する。
論文 参考訳(メタデータ) (2025-05-29T07:24:37Z) - Multi-Agent Collaboration via Evolving Orchestration [61.93162413517026]
大規模言語モデル(LLM)は、様々な下流タスクで顕著な成果を上げているが、そのモノリシックな性質は複雑な問題解決におけるスケーラビリティと効率を制限している。
LLMをベースとしたマルチエージェントコラボレーションのためのパウチスタイルのパラダイムを提案し、中央オーケストレータがタスク状態の進化に応じてエージェントを動的に指示する。
クローズドドメインおよびオープンドメインシナリオの実験により,この手法は計算コストを低減し,優れた性能が得られることが示された。
論文 参考訳(メタデータ) (2025-05-26T07:02:17Z) - HALO: Hierarchical Autonomous Logic-Oriented Orchestration for Multi-Agent LLM Systems [1.1930434318557155]
階層的推論アーキテクチャに基づくマルチエージェント協調フレームワークHALOを紹介する。
具体的には、タスク分解のための高レベル計画エージェント、サブタスク固有のエージェントインスタンス化のための中レベルロール設計エージェント、サブタスク実行のための低レベル推論エージェントを組み込んだ。
ユーザの大部分がプロンプトエンジニアリングの専門知識を欠いているため、Adaptive Prompt Refinementモジュールを使用して、生クエリをタスク固有のプロンプトに変換する。
論文 参考訳(メタデータ) (2025-05-17T04:14:03Z) - Neural Orchestration for Multi-Agent Systems: A Deep Learning Framework for Optimal Agent Selection in Multi-Domain Task Environments [0.8287206589886881]
マルチドメインタスク環境における最適なエージェント選択のためのニューラルネットワークフレームワークであるMetaOrchを提案する。
ファジィ評価モジュールは、完全性、妥当性、信頼度に沿ってエージェント応答をスコアし、オーケストレータを訓練するためのソフトインスペクタラベルを生成する。
異種剤を用いた模擬環境実験により, 提案手法が86.3%の選択精度を達成できた。
論文 参考訳(メタデータ) (2025-05-03T02:58:25Z) - MultiAgentBench: Evaluating the Collaboration and Competition of LLM agents [59.825725526176655]
大規模言語モデル(LLM)は、自律的なエージェントとして顕著な能力を示している。
既存のベンチマークでは、単一エージェントタスクにフォーカスするか、狭いドメインに限定されており、マルチエージェントのコーディネーションと競合のダイナミクスを捉えていない。
多様な対話シナリオにまたがってLLMベースのマルチエージェントシステムを評価するためのベンチマークであるMultiAgentBenchを紹介する。
論文 参考訳(メタデータ) (2025-03-03T05:18:50Z) - Agent-Oriented Planning in Multi-Agent Systems [54.429028104022066]
マルチエージェントシステムにおけるエージェント指向計画のための新しいフレームワークであるAOPを提案する。
本研究では, エージェント指向計画の3つの重要な設計原則, 可解性, 完全性, 非冗長性を明らかにする。
大規模実験は,マルチエージェントシステムにおける単一エージェントシステムと既存の計画戦略と比較して,現実の問題を解決する上でのAOPの進歩を実証している。
論文 参考訳(メタデータ) (2024-10-03T04:07:51Z) - Internet of Agents: Weaving a Web of Heterogeneous Agents for Collaborative Intelligence [79.5316642687565]
既存のマルチエージェントフレームワークは、多種多様なサードパーティエージェントの統合に苦慮することが多い。
我々はこれらの制限に対処する新しいフレームワークであるInternet of Agents (IoA)を提案する。
IoAはエージェント統合プロトコル、インスタントメッセージのようなアーキテクチャ設計、エージェントのチーム化と会話フロー制御のための動的メカニズムを導入している。
論文 参考訳(メタデータ) (2024-07-09T17:33:24Z) - TDAG: A Multi-Agent Framework based on Dynamic Task Decomposition and Agent Generation [41.21899915378596]
動的タスク分解・エージェント生成(TDAG)に基づくマルチエージェントフレームワークを提案する。
このフレームワークは複雑なタスクを小さなサブタスクに動的に分解し、それぞれが特定の生成されたサブエージェントに割り当てる。
ItineraryBenchは、さまざまな複雑さのタスク間でのメモリ、計画、ツール使用量のエージェントの能力を評価するように設計されている。
論文 参考訳(メタデータ) (2024-02-15T18:27:37Z) - Agents meet OKR: An Object and Key Results Driven Agent System with
Hierarchical Self-Collaboration and Self-Evaluation [25.308341461293857]
OKR-Agentは、タスク解決におけるLarge Language Models(LLM)の機能を強化するように設計されている。
我々のフレームワークには、階層オブジェクトとキー結果の生成とマルチレベル評価という、2つの新しいモジュールが含まれています。
論文 参考訳(メタデータ) (2023-11-28T06:16:30Z) - AgentVerse: Facilitating Multi-Agent Collaboration and Exploring
Emergent Behaviors [93.38830440346783]
本稿では,その構成をより高機能なシステムとして協調的に調整できるマルチエージェントフレームワークを提案する。
実験により,フレームワークが単一エージェントより優れたマルチエージェントグループを効果的に展開できることが実証された。
これらの振舞いの観点から、我々は、ポジティブなものを活用し、ネガティブなものを緩和し、マルチエージェントグループの協調可能性を改善するためのいくつかの戦略について議論する。
論文 参考訳(メタデータ) (2023-08-21T16:47:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。