論文の概要: Overview of the NLPCC 2025 Shared Task: Gender Bias Mitigation Challenge
- arxiv url: http://arxiv.org/abs/2506.12574v1
- Date: Sat, 14 Jun 2025 17:06:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-17 17:28:46.492044
- Title: Overview of the NLPCC 2025 Shared Task: Gender Bias Mitigation Challenge
- Title(参考訳): NLPCC 2025共有タスクの概要:ジェンダーバイアス緩和課題
- Authors: Yizhi Li, Ge Zhang, Hanhua Hong, Yiwen Wang, Chenghua Lin,
- Abstract要約: 中国語cOrpus foR Gender bIas Probing and Mitigation (CORGI-PM)を提案する。
中国語の文脈で性バイアスに特化して開発された注釈スキームに従って、高品質なラベルを持つ32.9kの文を含む。
注意すべき点は、CORGI-PMは5.2kの性別バイアスのある文と、人間のアノテーションによって書き直されたバイアスを除去したバージョンを含んでいることである。
- 参考スコア(独自算出の注目度): 16.204471028423917
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: As natural language processing for gender bias becomes a significant interdisciplinary topic, the prevalent data-driven techniques, such as pre-trained language models, suffer from biased corpus. This case becomes more obvious regarding those languages with less fairness-related computational linguistic resources, such as Chinese. To this end, we propose a Chinese cOrpus foR Gender bIas Probing and Mitigation (CORGI-PM), which contains 32.9k sentences with high-quality labels derived by following an annotation scheme specifically developed for gender bias in the Chinese context. It is worth noting that CORGI-PM contains 5.2k gender-biased sentences along with the corresponding bias-eliminated versions rewritten by human annotators. We pose three challenges as a shared task to automate the mitigation of textual gender bias, which requires the models to detect, classify, and mitigate textual gender bias. In the literature, we present the results and analysis for the teams participating this shared task in NLPCC 2025.
- Abstract(参考訳): ジェンダーバイアスの自然言語処理が重要な学際的話題になるにつれて、事前訓練された言語モデルのような一般的なデータ駆動技術は偏りのあるコーパスに悩まされる。
このケースは、中国語など、公平性に関係のない計算言語資源を持つ言語について、より明確になる。
この目的のために、中国語のcOrpus foR Gender bIas Probing and Mitigation (CORGI-PM)を提案する。
注意すべき点は、CORGI-PMは5.2kの性別バイアスのある文と、人間のアノテーションによって書き直されたバイアスを除去したバージョンを含んでいることである。
我々は、テキスト性バイアスの緩和を自動化するための共有タスクとして、3つの課題を提起し、モデルがテキスト性バイアスを検出し、分類し、緩和する必要がある。
本論文では,NLPCC 2025において,この共有タスクに参加するチームの成果と分析について述べる。
関連論文リスト
- GenderCARE: A Comprehensive Framework for Assessing and Reducing Gender Bias in Large Language Models [73.23743278545321]
大規模言語モデル(LLM)は、自然言語生成において顕著な能力を示してきたが、社会的バイアスを増大させることも観察されている。
GenderCAREは、革新的な基準、バイアス評価、リダクションテクニック、評価メトリクスを含む包括的なフレームワークである。
論文 参考訳(メタデータ) (2024-08-22T15:35:46Z) - Beyond Binary Gender: Evaluating Gender-Inclusive Machine Translation with Ambiguous Attitude Words [85.48043537327258]
既存の機械翻訳の性別バイアス評価は主に男性と女性の性別に焦点を当てている。
本研究では,AmbGIMT (Gender-Inclusive Machine Translation with Ambiguous attitude words) のベンチマークを示す。
本研究では,感情的態度スコア(EAS)に基づく性別バイアス評価手法を提案する。
論文 参考訳(メタデータ) (2024-07-23T08:13:51Z) - Evaluating Gender Bias in the Translation of Gender-Neutral Languages
into English [0.0]
我々は、トルコ語、ハンガリー語、フィンランド語、ペルシア語から英語への翻訳からなるGATEコーパスの拡張であるGATE X-Eを紹介する。
このデータセットは、幅広い文の長さと領域を持つ自然文を特徴とし、様々な言語現象に関する翻訳書き直しに挑戦する。
GPT-3.5 Turbo上に構築された英語のジェンダー書き換えソリューションをGATE X-Eを用いて評価する。
論文 参考訳(メタデータ) (2023-11-15T10:25:14Z) - VisoGender: A dataset for benchmarking gender bias in image-text pronoun
resolution [80.57383975987676]
VisoGenderは、視覚言語モデルで性別バイアスをベンチマークするための新しいデータセットである。
We focus to occupation-related biases in a hegemonic system of binary gender, inspired by Winograd and Winogender schemas。
我々は、最先端の視覚言語モデルをいくつかベンチマークし、それらが複雑な場面における二項性解消のバイアスを示すことを発見した。
論文 参考訳(メタデータ) (2023-06-21T17:59:51Z) - CORGI-PM: A Chinese Corpus For Gender Bias Probing and Mitigation [28.38578407487603]
高品質なラベル付き32.9k文を含む中国語cOrpus foR Gender bIas Probing and Mitigation CORGI-PMを提案する。
我々は,テキスト性バイアスを自動的に検出し,分類し,緩和するモデルを必要とする,テキスト性バイアスを緩和する3つの課題に対処する。
CORGI-PMは、性偏見と緩和のための最初の文レベルの中国語コーパスである。
論文 参考訳(メタデータ) (2023-01-01T12:48:12Z) - Evaluating Gender Bias in Natural Language Inference [5.034017602990175]
推論による自然言語理解における性別バイアスの評価手法を提案する。
チャレンジタスクを使用して、職業を用いたジェンダーステレオタイプの存在に関する最先端のNLIモデルを調査します。
その結果,mnliとsnliデータセットでトレーニングされた3モデルでは,性別による予測誤差が有意に高いことが示唆された。
論文 参考訳(メタデータ) (2021-05-12T09:41:51Z) - Type B Reflexivization as an Unambiguous Testbed for Multilingual
Multi-Task Gender Bias [5.239305978984572]
我々は,B型回帰型言語の場合,性別バイアスを検出するためにマルチタスクチャレンジデータセットを構築することができることを示した。
これらの言語では「医者がマスクを取り除いた」という直訳は中音読みと不一致読みのあいまいさではない。
4つの言語と4つのNLPタスクにまたがる多言語・マルチタスク課題データセットを提案する。
論文 参考訳(メタデータ) (2020-09-24T23:47:18Z) - Multi-Dimensional Gender Bias Classification [67.65551687580552]
機械学習モデルは、性別に偏ったテキストでトレーニングする際に、社会的に望ましくないパターンを不注意に学習することができる。
本稿では,テキスト中の性バイアスを複数の実用的・意味的な次元に沿って分解する一般的な枠組みを提案する。
このきめ細かいフレームワークを用いて、8つの大規模データセットにジェンダー情報を自動的にアノテートする。
論文 参考訳(メタデータ) (2020-05-01T21:23:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。