GNSS Spoofing Detection Based on Opportunistic Position Information
- URL: http://arxiv.org/abs/2506.12580v1
- Date: Sat, 14 Jun 2025 17:27:06 GMT
- Title: GNSS Spoofing Detection Based on Opportunistic Position Information
- Authors: Wenjie Liu, Panos Papadimitratos,
- Abstract summary: Position-based Attack Detection Scheme (PADS) is a probabilistic framework that uses regression and uncertainty analysis for positions.<n>PADS achieves up to 3 times the true positive rate at a low false positive rate.
- Score: 1.9688858888666714
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The limited or no protection for civilian Global Navigation Satellite System (GNSS) signals makes spoofing attacks relatively easy. With modern mobile devices often featuring network interfaces, state-of-the-art signals of opportunity (SOP) schemes can provide accurate network positions in replacement of GNSS. The use of onboard inertial sensors can also assist in the absence of GNSS, possibly in the presence of jammers. The combination of SOP and inertial sensors has received limited attention, yet it shows strong results on fully custom-built platforms. We do not seek to improve such special-purpose schemes. Rather, we focus on countering GNSS attacks, notably detecting them, with emphasis on deployment with consumer-grade platforms, notably smartphones, that provide off-the-shelf opportunistic information (i.e., network position and inertial sensor data). Our Position-based Attack Detection Scheme (PADS) is a probabilistic framework that uses regression and uncertainty analysis for positions. The regression optimization problem is a weighted mean square error of polynomial fitting, with constraints that the fitted positions satisfy the device velocity and acceleration. Then, uncertainty is modeled by a Gaussian process, which provides more flexibility to analyze how sure or unsure we are about position estimations. In the detection process, we combine all uncertainty information with the position estimations into a fused test statistic, which is the input utilized by an anomaly detector based on outlier ensembles. The evaluation shows that the PADS outperforms a set of baseline methods that rely on SOP or inertial sensor-based or statistical tests, achieving up to 3 times the true positive rate at a low false positive rate.
Related papers
- CANTXSec: A Deterministic Intrusion Detection and Prevention System for CAN Bus Monitoring ECU Activations [53.036288487863786]
We propose CANTXSec, the first deterministic Intrusion Detection and Prevention system based on physical ECU activations.<n>It detects and prevents classical attacks in the CAN bus, while detecting advanced attacks that have been less investigated in the literature.<n>We prove the effectiveness of our solution on a physical testbed, where we achieve 100% detection accuracy in both classes of attacks while preventing 100% of FIAs.
arXiv Detail & Related papers (2025-05-14T13:37:07Z) - Time-based GNSS attack detection [0.0]
Cross-checking the provided time against alternative trusted time sources can lead to attack detection aiming at controlling the receiver time.<n>We implement adversaries spanning from simplistic spoofers to advanced ones synchronized with the constellation.<n>The method is largely agnostic to the satellite constellation and the attacker type, making time-based data validation of information compatible with existing receivers and readily deployable.
arXiv Detail & Related papers (2025-02-06T08:28:41Z) - Evaluating ML Robustness in GNSS Interference Classification, Characterization & Localization [42.14439854721613]
Jamming devices disrupt signals from the global navigation satellite system (GNSS)<n>This paper introduces an extensive dataset comprising snapshots obtained from a low-frequency antenna.<n>Our objective is to assess the resilience of machine learning (ML) models against environmental changes.
arXiv Detail & Related papers (2024-09-23T15:20:33Z) - Extending RAIM with a Gaussian Mixture of Opportunistic Information [1.9688858888666714]
Original receiver autonomous integrity monitoring (RAIM) was not designed for securing.
We extend RAIM by incorporating all opportunistic information, i.e., measurements from terrestrial infrastructures and onboard sensors.
The objective is to assess the likelihood of spoofing by analyzing locations derived from extended RAIM solutions.
arXiv Detail & Related papers (2024-02-05T19:03:18Z) - AdvGPS: Adversarial GPS for Multi-Agent Perception Attack [47.59938285740803]
This study investigates whether specific GPS signals can easily mislead the multi-agent perception system.
We introduce textscAdvGPS, a method capable of generating adversarial GPS signals which are also stealthy for individual agents within the system.
Our experiments on the OPV2V dataset demonstrate that these attacks substantially undermine the performance of state-of-the-art methods.
arXiv Detail & Related papers (2024-01-30T23:13:41Z) - Location Estimation and Recovery using 5G Positioning: Thwarting GNSS Spoofing Attacks [2.8711436763354237]
cryptographic spoofers can prevent safe navigation and tracking of road users.
Spoofing can lead to loss of assets, inaccurate fare estimation, enforcing the wrong speed limit, miscalculated toll tax, passengers reaching an incorrect location.
We design the Location Estimation and Recovery(LER) systems to estimate the absolute position using the combination of correct and 5G positioning.
arXiv Detail & Related papers (2023-10-23T12:54:13Z) - Probabilistic detection of GNSS spoofing using opportunistic information [1.9688858888666714]
Civilian signals are usually not cryptographically protected.<n>This makes attacks that forge signals relatively easy.<n>Considering modern devices often have network connections and onboard sensors, a Probabilistic Detection of Spoofing scheme is proposed.
arXiv Detail & Related papers (2023-05-09T12:53:07Z) - Automated classification of pre-defined movement patterns: A comparison
between GNSS and UWB technology [55.41644538483948]
Real-time location systems (RTLS) allow for collecting data from human movement patterns.
The current study aims to design and evaluate an automated framework to classify human movement patterns in small areas.
arXiv Detail & Related papers (2023-03-10T14:46:42Z) - DAAIN: Detection of Anomalous and Adversarial Input using Normalizing
Flows [52.31831255787147]
We introduce a novel technique, DAAIN, to detect out-of-distribution (OOD) inputs and adversarial attacks (AA)
Our approach monitors the inner workings of a neural network and learns a density estimator of the activation distribution.
Our model can be trained on a single GPU making it compute efficient and deployable without requiring specialized accelerators.
arXiv Detail & Related papers (2021-05-30T22:07:13Z) - Uncertainty-Aware Deep Calibrated Salient Object Detection [74.58153220370527]
Existing deep neural network based salient object detection (SOD) methods mainly focus on pursuing high network accuracy.
These methods overlook the gap between network accuracy and prediction confidence, known as the confidence uncalibration problem.
We introduce an uncertaintyaware deep SOD network, and propose two strategies to prevent deep SOD networks from being overconfident.
arXiv Detail & Related papers (2020-12-10T23:28:36Z) - Prediction-Based GNSS Spoofing Attack Detection for Autonomous Vehicles [5.579370215490055]
We have developed a prediction-based spoofing attack detection strategy using the long short-term memory (LSTM) model.
Based on the predicted distance traveled between the current location and the immediate future location, a threshold value is established.
Our analysis revealed that the prediction-based spoofed attack detection strategy can successfully detect the attack in real-time.
arXiv Detail & Related papers (2020-10-16T18:26:59Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
In this paper, an effective anomaly detection framework is proposed utilizing Bayesian Optimization technique.
The performance of the considered algorithms is evaluated using the ISCX 2012 dataset.
Experimental results show the effectiveness of the proposed framework in term of accuracy rate, precision, low-false alarm rate, and recall.
arXiv Detail & Related papers (2020-08-05T19:29:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.