Learning Mappings in Mesh-based Simulations
- URL: http://arxiv.org/abs/2506.12652v1
- Date: Sat, 14 Jun 2025 22:43:13 GMT
- Title: Learning Mappings in Mesh-based Simulations
- Authors: Shirin Hosseinmardi, Ramin Bostanabad,
- Abstract summary: We introduce a novel and parameter-free encoding scheme that aggregates footprints of points onto grid vertices and yields information-rich grid representations of the topology.<n> Specifically, we integrate our encoder with a uniquely designed UNet (E-UNet) and benchmark its performance against Fourier- and transformer-based models across diverse 2D and 3D problems.<n>Our proposed framework offers a practical alternative to both primitive and computationally intensive encoding schemes; supporting broad adoption in computational science applications involving mesh-based simulations.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many real-world physics and engineering problems arise in geometrically complex domains discretized by meshes for numerical simulations. The nodes of these potentially irregular meshes naturally form point clouds whose limited tractability poses significant challenges for learning mappings via machine learning models. To address this, we introduce a novel and parameter-free encoding scheme that aggregates footprints of points onto grid vertices and yields information-rich grid representations of the topology. Such structured representations are well-suited for standard convolution and FFT (Fast Fourier Transform) operations and enable efficient learning of mappings between encoded input-output pairs using Convolutional Neural Networks (CNNs). Specifically, we integrate our encoder with a uniquely designed UNet (E-UNet) and benchmark its performance against Fourier- and transformer-based models across diverse 2D and 3D problems where we analyze the performance in terms of predictive accuracy, data efficiency, and noise robustness. Furthermore, we highlight the versatility of our encoding scheme in various mapping tasks including recovering full point cloud responses from partial observations. Our proposed framework offers a practical alternative to both primitive and computationally intensive encoding schemes; supporting broad adoption in computational science applications involving mesh-based simulations.
Related papers
- Geometry-Informed Neural Operator Transformer [0.8906214436849201]
This work introduces the Geometry-Informed Neural Operator Transformer (GINOT), which integrates the transformer architecture with the neural operator framework to enable forward predictions for arbitrary geometries.<n>The performance of GINOT is validated on multiple challenging datasets, showcasing its high accuracy and strong generalization capabilities for complex and arbitrary 2D and 3D geometries.
arXiv Detail & Related papers (2025-04-28T03:39:27Z) - Neural Network Modeling of Microstructure Complexity Using Digital Libraries [1.03590082373586]
We evaluate the performance of artificial and spiking neural networks in learning and predicting fatigue crack growth and Turing pattern development.<n>Our assessment suggests that the leaky integrate-and-fire neuron model offers superior predictive accuracy with fewer parameters and less memory usage.
arXiv Detail & Related papers (2025-01-30T07:44:21Z) - SpaceMesh: A Continuous Representation for Learning Manifold Surface Meshes [61.110517195874074]
We present a scheme to directly generate manifold, polygonal meshes of complex connectivity as the output of a neural network.<n>Our key innovation is to define a continuous latent connectivity space at each mesh, which implies the discrete mesh.<n>In applications, this approach not only yields high-quality outputs from generative models, but also enables directly learning challenging geometry processing tasks such as mesh repair.
arXiv Detail & Related papers (2024-09-30T17:59:03Z) - Iterative Sizing Field Prediction for Adaptive Mesh Generation From Expert Demonstrations [49.173541207550485]
Adaptive Meshing By Expert Reconstruction (AMBER) is an imitation learning problem.
AMBER combines a graph neural network with an online data acquisition scheme to predict the projected sizing field of an expert mesh.
We experimentally validate AMBER on 2D meshes and 3D meshes provided by a human expert, closely matching the provided demonstrations and outperforming a single-step CNN baseline.
arXiv Detail & Related papers (2024-06-20T10:01:22Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
We propose a new architecture that relies on Distance-based Weighted Transformer (DWT) to better understand the relationships between an image's components.
CNNs are used to augment the local texture information of coarse priors.
DWT blocks are used to recover certain coarse textures and coherent visual structures.
arXiv Detail & Related papers (2023-10-11T12:46:11Z) - InVAErt networks: a data-driven framework for model synthesis and
identifiability analysis [0.0]
inVAErt is a framework for data-driven analysis and synthesis of physical systems.
It uses a deterministic decoder to represent the forward and inverse maps, a normalizing flow to capture the probabilistic distribution of system outputs, and a variational encoder to learn a compact latent representation for the lack of bijectivity between inputs and outputs.
arXiv Detail & Related papers (2023-07-24T07:58:18Z) - Domain Agnostic Fourier Neural Operators [15.29112632863168]
We introduce domain agnostic Fourier neural operator (DAFNO) for learning surrogates with irregular geometries and evolving domains.
The key idea is to incorporate a smoothed characteristic function in the integral layer architecture of FNOs.
DAFNO has achieved state-of-the-art accuracy as compared to baseline neural operator models.
arXiv Detail & Related papers (2023-04-30T13:29:06Z) - Hybrid quantum physics-informed neural networks for simulating computational fluid dynamics in complex shapes [37.69303106863453]
We present a hybrid quantum physics-informed neural network that simulates laminar fluid flows in 3D Y-shaped mixers.
Our approach combines the expressive power of a quantum model with the flexibility of a physics-informed neural network, resulting in a 21% higher accuracy compared to a purely classical neural network.
arXiv Detail & Related papers (2023-04-21T20:49:29Z) - Machine Learning model for gas-liquid interface reconstruction in CFD
numerical simulations [59.84561168501493]
The volume of fluid (VoF) method is widely used in multi-phase flow simulations to track and locate the interface between two immiscible fluids.
A major bottleneck of the VoF method is the interface reconstruction step due to its high computational cost and low accuracy on unstructured grids.
We propose a machine learning enhanced VoF method based on Graph Neural Networks (GNN) to accelerate the interface reconstruction on general unstructured meshes.
arXiv Detail & Related papers (2022-07-12T17:07:46Z) - Inducing Gaussian Process Networks [80.40892394020797]
We propose inducing Gaussian process networks (IGN), a simple framework for simultaneously learning the feature space as well as the inducing points.
The inducing points, in particular, are learned directly in the feature space, enabling a seamless representation of complex structured domains.
We report on experimental results for real-world data sets showing that IGNs provide significant advances over state-of-the-art methods.
arXiv Detail & Related papers (2022-04-21T05:27:09Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
Generative Adversarial Imputation Nets (GANs) and GAN-based techniques have attracted attention as unsupervised machine learning methods.
We name our proposed method as Con Conval Generative Adversarial Imputation Nets (Conv-GAIN)
arXiv Detail & Related papers (2021-11-03T03:50:48Z) - Conditionally Parameterized, Discretization-Aware Neural Networks for
Mesh-Based Modeling of Physical Systems [0.0]
We generalize the idea of conditional parametrization -- using trainable functions of input parameters.
We show that conditionally parameterized networks provide superior performance compared to their traditional counterparts.
A network architecture named CP-GNet is also proposed as the first deep learning model capable of reacting standalone prediction of flows on meshes.
arXiv Detail & Related papers (2021-09-15T20:21:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.