Hierarchical Group-wise Ranking Framework for Recommendation Models
- URL: http://arxiv.org/abs/2506.12756v1
- Date: Sun, 15 Jun 2025 07:47:26 GMT
- Title: Hierarchical Group-wise Ranking Framework for Recommendation Models
- Authors: YaChen Yan, Liubo Li, Ravi Choudhary,
- Abstract summary: CTR/CVR models are increasingly trained with ranking objectives to improve item ranking quality.<n>Current methods rely on in-batch negative sampling, which predominantly surfaces easy negatives.<n>We propose a Hierarchical Group-wise Ranking Framework with two key components.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In modern recommender systems, CTR/CVR models are increasingly trained with ranking objectives to improve item ranking quality. While this shift aligns training more closely with serving goals, most existing methods rely on in-batch negative sampling, which predominantly surfaces easy negatives. This limits the model's ability to capture fine-grained user preferences and weakens overall ranking performance. To address this, we propose a Hierarchical Group-wise Ranking Framework with two key components. First, we apply residual vector quantization to user embeddings to generate hierarchical user codes that partition users into hierarchical, trie-structured clusters. Second, we apply listwise ranking losses to user-item pairs at each level of the hierarchy, where shallow levels group loosely similar users and deeper levels group highly similar users, reinforcing learning-to-rank signals through progressively harder negatives. Since users with similar preferences and content exposure tend to yield more informative negatives, applying ranking losses within these hierarchical user groups serves as an effective approximation of hard negative mining. Our approach improves ranking performance without requiring complex real-time context collection or retrieval infrastructure. Extensive experiments demonstrate that the proposed framework consistently enhances both model calibration and ranking accuracy, offering a scalable and practical solution for industrial recommender systems.
Related papers
- LGAI-EMBEDDING-Preview Technical Report [41.68404082385825]
This report presents a unified instruction-based framework for learning generalized text embeddings optimized for both information retrieval (IR) and non-IR tasks.<n>Our approach combines in-context learning, soft supervision, and adaptive hard-negative mining to generate context-aware embeddings.<n>Results show that our method achieves strong generalization and ranks among the top-performing models by Borda score.
arXiv Detail & Related papers (2025-06-09T05:30:35Z) - Online Clustering of Dueling Bandits [59.09590979404303]
We introduce the first "clustering of dueling bandit algorithms" to enable collaborative decision-making based on preference feedback.<n>We propose two novel algorithms: (1) Clustering of Linear Dueling Bandits (COLDB) which models the user reward functions as linear functions of the context vectors, and (2) Clustering of Neural Dueling Bandits (CONDB) which uses a neural network to model complex, non-linear user reward functions.
arXiv Detail & Related papers (2025-02-04T07:55:41Z) - Hierarchical Reinforcement Learning for Temporal Abstraction of Listwise Recommendation [51.06031200728449]
We propose a novel framework called mccHRL to provide different levels of temporal abstraction on listwise recommendation.
Within the hierarchical framework, the high-level agent studies the evolution of user perception, while the low-level agent produces the item selection policy.
Results observe significant performance improvement by our method, compared with several well-known baselines.
arXiv Detail & Related papers (2024-09-11T17:01:06Z) - Expert with Clustering: Hierarchical Online Preference Learning Framework [4.05836962263239]
Expert with Clustering (EWC) is a hierarchical contextual bandit framework that integrates clustering techniques and prediction with expert advice.
EWC can substantially reduce regret by 27.57% compared to the LinUCB baseline.
arXiv Detail & Related papers (2024-01-26T18:44:49Z) - Bipartite Ranking Fairness through a Model Agnostic Ordering Adjustment [54.179859639868646]
We propose a model agnostic post-processing framework xOrder for achieving fairness in bipartite ranking.
xOrder is compatible with various classification models and ranking fairness metrics, including supervised and unsupervised fairness metrics.
We evaluate our proposed algorithm on four benchmark data sets and two real-world patient electronic health record repositories.
arXiv Detail & Related papers (2023-07-27T07:42:44Z) - ClusterSeq: Enhancing Sequential Recommender Systems with Clustering
based Meta-Learning [3.168790535780547]
ClusterSeq is a Meta-Learning Clustering-Based Sequential Recommender System.
It exploits dynamic information in the user sequence to enhance item prediction accuracy, even in the absence of side information.
Our proposed approach achieves a substantial improvement of 16-39% in Mean Reciprocal Rank (MRR)
arXiv Detail & Related papers (2023-07-25T18:53:24Z) - Unbiased Pairwise Learning to Rank in Recommender Systems [4.058828240864671]
Unbiased learning to rank algorithms are appealing candidates and have already been applied in many applications with single categorical labels.
We propose a novel unbiased LTR algorithm to tackle the challenges, which innovatively models position bias in the pairwise fashion.
Experiment results on public benchmark datasets and internal live traffic show the superior results of the proposed method for both categorical and continuous labels.
arXiv Detail & Related papers (2021-11-25T06:04:59Z) - Adaptive Sampling for Heterogeneous Rank Aggregation from Noisy Pairwise
Comparisons [85.5955376526419]
In rank aggregation problems, users exhibit various accuracy levels when comparing pairs of items.
We propose an elimination-based active sampling strategy, which estimates the ranking of items via noisy pairwise comparisons.
We prove that our algorithm can return the true ranking of items with high probability.
arXiv Detail & Related papers (2021-10-08T13:51:55Z) - Learning over no-Preferred and Preferred Sequence of items for Robust
Recommendation [66.8722561224499]
We propose a theoretically founded sequential strategy for training large-scale Recommender Systems (RS) over implicit feedback.
We present two variants of this strategy where model parameters are updated using either the momentum method or a gradient-based approach.
arXiv Detail & Related papers (2020-12-12T22:10:15Z) - Overcoming Data Sparsity in Group Recommendation [52.00998276970403]
Group recommender systems should be able to accurately learn not only users' personal preferences but also preference aggregation strategy.
In this paper, we take Bipartite Graphding Model (BGEM), the self-attention mechanism and Graph Convolutional Networks (GCNs) as basic building blocks to learn group and user representations in a unified way.
arXiv Detail & Related papers (2020-10-02T07:11:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.