Flow-Based Policy for Online Reinforcement Learning
- URL: http://arxiv.org/abs/2506.12811v1
- Date: Sun, 15 Jun 2025 10:53:35 GMT
- Title: Flow-Based Policy for Online Reinforcement Learning
- Authors: Lei Lv, Yunfei Li, Yu Luo, Fuchun Sun, Tao Kong, Jiafeng Xu, Xiao Ma,
- Abstract summary: FlowRL is a framework for online reinforcement learning that integrates flow-based policy representation with Wasserstein-2-regularized optimization.<n>We show that FlowRL achieves competitive performance in online reinforcement learning benchmarks.
- Score: 34.86742824686496
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present \textbf{FlowRL}, a novel framework for online reinforcement learning that integrates flow-based policy representation with Wasserstein-2-regularized optimization. We argue that in addition to training signals, enhancing the expressiveness of the policy class is crucial for the performance gains in RL. Flow-based generative models offer such potential, excelling at capturing complex, multimodal action distributions. However, their direct application in online RL is challenging due to a fundamental objective mismatch: standard flow training optimizes for static data imitation, while RL requires value-based policy optimization through a dynamic buffer, leading to difficult optimization landscapes. FlowRL first models policies via a state-dependent velocity field, generating actions through deterministic ODE integration from noise. We derive a constrained policy search objective that jointly maximizes Q through the flow policy while bounding the Wasserstein-2 distance to a behavior-optimal policy implicitly derived from the replay buffer. This formulation effectively aligns the flow optimization with the RL objective, enabling efficient and value-aware policy learning despite the complexity of the policy class. Empirical evaluations on DMControl and Humanoidbench demonstrate that FlowRL achieves competitive performance in online reinforcement learning benchmarks.
Related papers
- EXPO: Stable Reinforcement Learning with Expressive Policies [74.30151915786233]
We propose a sample-efficient online reinforcement learning algorithm to maximize value with two parameterized policies.<n>Our approach yields up to 2-3x improvement in sample efficiency on average over prior methods.
arXiv Detail & Related papers (2025-07-10T17:57:46Z) - Flow-Based Single-Step Completion for Efficient and Expressive Policy Learning [0.0]
We propose a generative policy trained with an augmented flow-matching objective to predict direct completion vectors from intermediate flow samples.<n>Our method scales effectively to offline, offline-to-online, and online RL settings, offering substantial gains in speed and adaptability.<n>We extend SSCP to goal-conditioned RL, enabling flat policies to exploit subgoal structures without explicit hierarchical inference.
arXiv Detail & Related papers (2025-06-26T16:09:53Z) - Online Reward-Weighted Fine-Tuning of Flow Matching with Wasserstein Regularization [14.320131946691268]
We propose an easy-to-use and theoretically sound fine-tuning method for flow-based generative models.<n>By introducing an online rewardweighting mechanism, our approach guides the model to prioritize high-reward regions in the data manifold.<n>Our method achieves optimal policy convergence while allowing controllable trade-offs between reward and diversity.
arXiv Detail & Related papers (2025-02-09T22:45:15Z) - Policy Agnostic RL: Offline RL and Online RL Fine-Tuning of Any Class and Backbone [72.17534881026995]
We develop an offline and online fine-tuning approach called policy-agnostic RL (PA-RL)<n>We show the first result that successfully fine-tunes OpenVLA, a 7B generalist robot policy, autonomously with Cal-QL, an online RL fine-tuning algorithm.
arXiv Detail & Related papers (2024-12-09T17:28:03Z) - Offline-Boosted Actor-Critic: Adaptively Blending Optimal Historical Behaviors in Deep Off-Policy RL [42.57662196581823]
Off-policy reinforcement learning (RL) has achieved notable success in tackling many complex real-world tasks.
Most existing off-policy RL algorithms fail to maximally exploit the information in the replay buffer.
We present Offline-Boosted Actor-Critic (OBAC), a model-free online RL framework that elegantly identifies the outperforming offline policy.
arXiv Detail & Related papers (2024-05-28T18:38:46Z) - Diffusion-based Reinforcement Learning via Q-weighted Variational Policy Optimization [55.97310586039358]
Diffusion models have garnered widespread attention in Reinforcement Learning (RL) for their powerful expressiveness and multimodality.<n>We propose a novel model-free diffusion-based online RL algorithm, Q-weighted Variational Policy Optimization (QVPO)<n>Specifically, we introduce the Q-weighted variational loss, which can be proved to be a tight lower bound of the policy objective in online RL under certain conditions.<n>We also develop an efficient behavior policy to enhance sample efficiency by reducing the variance of the diffusion policy during online interactions.
arXiv Detail & Related papers (2024-05-25T10:45:46Z) - Reparameterized Policy Learning for Multimodal Trajectory Optimization [61.13228961771765]
We investigate the challenge of parametrizing policies for reinforcement learning in high-dimensional continuous action spaces.
We propose a principled framework that models the continuous RL policy as a generative model of optimal trajectories.
We present a practical model-based RL method, which leverages the multimodal policy parameterization and learned world model.
arXiv Detail & Related papers (2023-07-20T09:05:46Z) - Diffusion Policies as an Expressive Policy Class for Offline
Reinforcement Learning [70.20191211010847]
Offline reinforcement learning (RL) aims to learn an optimal policy using a previously collected static dataset.
We introduce Diffusion Q-learning (Diffusion-QL) that utilizes a conditional diffusion model to represent the policy.
We show that our method can achieve state-of-the-art performance on the majority of the D4RL benchmark tasks.
arXiv Detail & Related papers (2022-08-12T09:54:11Z) - Model-Based Offline Meta-Reinforcement Learning with Regularization [63.35040401948943]
offline Meta-RL is emerging as a promising approach to address these challenges.
MerPO learns a meta-model for efficient task structure inference and an informative meta-policy.
We show that MerPO offers guaranteed improvement over both the behavior policy and the meta-policy.
arXiv Detail & Related papers (2022-02-07T04:15:20Z) - Pareto Deterministic Policy Gradients and Its Application in 5G Massive
MIMO Networks [32.099949375036495]
We consider jointly optimizing cell load balance and network throughput via a reinforcement learning (RL) approach.
Our rationale behind using RL is to circumvent the challenges of analytically modeling user mobility and network dynamics.
To accomplish this joint optimization, we integrate vector rewards into the RL value network and conduct RL action via a separate policy network.
arXiv Detail & Related papers (2020-12-02T15:35:35Z) - Mixed Reinforcement Learning with Additive Stochastic Uncertainty [19.229447330293546]
Reinforcement learning (RL) methods often rely on massive exploration data to search optimal policies, and suffer from poor sampling efficiency.
This paper presents a mixed RL algorithm by simultaneously using dual representations of environmental dynamics to search the optimal policy.
The effectiveness of the mixed RL is demonstrated by a typical optimal control problem of non-affine nonlinear systems.
arXiv Detail & Related papers (2020-02-28T08:02:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.